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L2N1 Check Your Understanding 1. Participation Poll

In a Markov decision process, a large discount factor v means that short
term rewards are much more influential than long term rewards. [Enter
your answer in participation poll |

o True
o False

@ Don't know
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Class Tasks and Updates

@ Homework 1 out today. Due:

@ Office hours are about to start. See Ed for days, times of group and
1:1 office hours
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Today's Plan

@ Last Time:

o Introduction
o Components of an agent: model, value, policy

@ This Time:
e Making good decisions given a Markov decision process
@ Next Time:
e Policy evaluation when don't have a model of how the world works
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Models, Policies, Values

@ Model: Mathematical models of dynamics and reward
@ Policy: Function mapping states to actions

e Value function: future rewards from being in a state and/or action
when following a particular policy

Winter 2023 6 /66
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Today: Given a model of the world

Markov Processes

Markov Reward Processes (MRPs)
Markov Decision Processes (MDPs)
Evaluation and Control in MDPs
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Full Observability: Markov Decision Process (MDP)

World

State S,

Reward r, Action a,

Agent

@ MDPs can model a huge number of interesting problems and settings

e Bandits: single state MDP
e Optimal control mostly about continuous-state MDPs
o Partially observable MDPs = MDP where state is history
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Recall: Markov Property

@ Information state: sufficient statistic of history

@ State s; is Markov if and only if:

P(5t+1|5t, at) = P(5t+1’ht, at)

o Future is independent of past given present
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Markov Process or Markov Chain

Memoryless random process
e Sequence of random states with Markov property

Definition of Markov Process

e S is a (finite) set of states (s € S)
o P is dynamics/transition model that specifices p(s;41 = s'|st = s)

@ Note: no rewards, no actions
If finite number (/) of states, can express P as a matrix

P(s1|s1) P(s2ls1) -+ P(snls1)
p_ P(si|s2) P(s2|s2) -+ P(sn|s2)
P(51-|SN) P(52.|5N) .. ’D(S/\-/|5N)
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Example: Mars Rover Markov Chain Transition Matrix, P

S1 S2 S3 Sy S5 Se S7
0.4 > 0.4 > 0.4 > 0.44 > 0.4 > 0.4 >
_ 0.4 0.4 0.4 0.4 _ 0.4 0.4
o oo O O O O O
0.6 0.2 0.2 0.2 0.2 0.2 0.6

06 04 0 0O O O O
04 02 04 0 0 0 O
04 02 04 0 0 O
0 04 02 04 0 O
0 0O 04 02 04 O
0 0 O 04 02 04
0

0 0 0 04 06

0
0
0
0
0
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Example: Mars Rover Markov Chain Episodes

S1 Sz S3 Sy S5 Se S7
0.4 0.4 > 0.4 > 0.4 > 0.4 0.44
_ 0.4 _ J0.4 _ 0.4 _ 0.4 _ 0.4 _ 10.4
o O O o O O O
0.6 0.2 0.2 0.2 0.2 0.2 0.6

Example: Sample episodes starting from S4
@ 54,55,56,57,57,57, - --
@ 54,54,55,54,55,5; - - -

@ 54,53,52,51,---
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Markov Reward Process (MRP)

Markov Reward Process is a Markov Chain + rewards
Definition of Markov Reward Process (MRP)
o S is a (finite) set of states (s € S)
e P is dynamics/transition model that specifices P(s;11 = s'|s; = s)
e R is a reward function R(s; = s) = E[r|s; = s]
o Discount factor v € [0, 1]

Note: no actions

If finite number (/) of states, can express R as a vector
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Example: Mars Rover MRP

S1 S2 S3 Sy S5 Se S7
04 0.4] 0.4 0.4 04 04]
< 0.4 < 0.4 < 0.4 < 0.4 < 0.4 <« 0.4
o oo O O O OO O
0.6 0.2 0.2 0.2 0.2 0.2 0.6

@ Reward: +1 in s1, +10 in s7, O in all other states
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Return & Value Function

@ Definition of Horizon (H)

o Number of time steps in each episode
e Can be infinite
e Otherwise called finite Markov reward process

@ Definition of Return, G; (for a MRP)

e Discounted sum of rewards from time step t to horizon H

Ge=re+ w1+ Vro+ -+

o Definition of State Value Function, V/(s) (for a MRP)
o Expected return from starting in state s

1

V(s) = E[G;|s; = s] = E[rs +7res1 +72ro 4 M resH—1|St = 9]
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Discount Factor

Mathematically convenient (avoid infinite returns and values)
Humans often act as if there's a discount factor < 1
~v = 0: Only care about immediate reward

~v = 1: Future reward is as beneficial as immediate reward

If episode lengths are always finite (H < 00), can use v =1
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Computing the Value of a Markov Reward Process

o Markov property provides structure

@ MRP value function satisfies

V)= Ris) =+ 7Y PSIs)V(s)

!
Immediate reward s'€S

Discounted sum of future rewards
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Matrix Form of Bellman Equation for MRP

@ For finite state MRP, we can express V/(s) using a matrix equation

Vi) (RED\ el e (v
: = : +7 : : :
Vi) A\R(on) Plsilsw) - Plsulsw)) V¢V

V=R+~yPV
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Analytic Solution for Value of MRP

@ For finite state MRP, we can express V/(s) using a matrix equation

v\ R\ (b T ] (Ve
=1 |+ : N : :
Visn) Rlsn) P(silsn) -+ P(sn|sn) Visw)

V=R+~yPV
V —~yPV =R
(I —vP)V =R

V=(-~P)IR

@ Solving directly requires taking a matrix inverse ~ O(N3)
o Note that (/ — yP) is invertible
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Iterative Algorithm for Computing Value of a MRP

Dynamic programming
Initialize Vp(s) = 0 for all s

@ For k =1 until convergence
e Forallsin S

Vi(s) = R(s) +v > _ P(s'|s) Vi (s')
s’'eS

Computational complexity: O(|S|?) for each iteration (|S| = N)

Emma Brunskill (CS234 Reinforcement Learn Lecture 2: Making Sequences of Good Decis Winter 2023



Markov Decision Process (MDP)

@ Markov Decision Process is Markov Reward Process + actions
@ Definition of MDP

e S is a (finite) set of Markov states s € S

o Ais a (finite) set of actions a € A

e P is dynamics/transition model for each action, that specifies
P(st11 =8'|ss =s,ar = a)

e R is a reward function®

R(st =s,a; = a) = E[re|se = s,a: = 4]

o Discount factor v € [0, 1]
e MDP is a tuple: (S,A,P,R,7)

'Reward is sometimes defined as a function of the current state, or as a function of
the (state, action, next state) tuple. Most frequently in this class, we will assume reward
is a function of state and action
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Example: Mars Rover MDP

S1 S2 S3 Sy S5 Sg S7

P(s'|s,a1) = P(s'|s, a) =

[cleololoNel - S
[eoNeNeNel o Nl
O OO OOOoO
OO+ OOOOo
O O OO OoOOo
H O OOOOOo
O OO OO OO
O OO OO oo
OO OO OO
OO OO OO
OO OO~ OOoO
OO O OOOoO
OO R OOOOo
H =2 OOOOO

@ 2 deterministic actions
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MDP Policies

@ Policy specifies what action to take in each state
o Can be deterministic or stochastic

@ For generality, consider as a conditional distribution
o Given a state, specifies a distribution over actions

e Policy: m(als) = P(a; = als; = s)
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MDP + Policy

e MDP + m(a|s) = Markov Reward Process
@ Precisely, it is the MRP (S, R™, P™,~), where

R™(s) =) _m(als)R(s,a)

acA

P (s'|s) = Z w(als)P(s'|s, a)

acA

@ Implies we can use same techniques to evaluate the value of a policy
for a MDP as we could to compute the value of a MRP, by defining a
MRP with R™ and P™
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MDP Policy Evaluation, Iterative Algorithm

Initialize Vp(s) = 0 for all s
For k = 1 until convergence
e Forallsin S

Vi(s) = 3 (als) [ 5,0) 47 3 pls'ls, ) Via(s )]

a s'eS

This is a Bellman backup for a particular policy

Note that if the policy is deterministic then the above update
simplifies to

Vi(s) = r(s,m(s)) +7 Y p(s'ls, 7(s)) Vil y(s')
s’eS
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Exercise L2E1: MDP 1 lteration of Policy Evaluation, Mars

Rover Example

Dynamics: p(se|se,a1) = 0.5, p(s7|se,a1) = 0.5, ...

Reward: for all actions, +1 in state s;, +10 in state s7, 0 otherwise
Let m(s) = a1 Vs, assume V,, =[1 00000 10] and k=1, v=0.5
Compute Vi1(s6)

See answer at the end of the slide deck. If you'd like practice, work this
out and then check your answers.
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Check Your Understanding Poll L2N2

S1 S2 S3 Sy S5 Se S7

@ We will shortly be interested in not just evaluating the value of a
single policy, but finding an optimal policy. Given this it is informative
to think about properties of the potential policy space.

@ First for the Mars rover example [ 7 discrete states (location of

rover); 2 actions: Left or Right]

How many deterministic policies are there?

Select answer on the participation poll: 2 / 14 / 72 / 27 / Not sure

Is the optimal policy (one with highest value) for a MDP unique?

@ Select answer on the participation poll: Yes / No / Not sure
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Check Your Understanding L2N2

S1 Sz S3 Sy S5 Sg S7

7 discrete states (location of rover)
2 actions: Left or Right
How many deterministic policies are there?

Is the highest reward policy for a MDP always unique?
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MDP Control

@ Compute the optimal policy
7 (s) = argmax V" (s)
s

@ There exists a unique optimal value function

@ Optimal policy for a MDP in an infinite horizon problem is
deterministic
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MDP Control

@ Compute the optimal policy

m*(s) = argmax V"™ (s)

@ There exists a unique optimal value function
e Optimal policy for a MDP in an infinite horizon problem (agent acts
forever is

o Deterministic
o Stationary (does not depend on time step)
e Unique? Not necessarily, may have two policies with identical (optimal)

values

Winter 2023 30/ 66
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Policy Search

@ One option is searching to compute best policy

o Number of deterministic policies is |A[l°!

@ Policy iteration is generally more efficient than enumeration
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MDP Policy Iteration (PI)

@ Seti=0

o Initialize mo(s) randomly for all states s

o While i == 0 or ||m; — mj_1]|1 > 0 (L1-norm, measures if the policy
changed for any state):

e V7™ « MDP V function policy evaluation of 7;
e 71 < Policy improvement
0o i=i+1
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New Definition: State-Action Value Q

@ State-action value of a policy

Q"(s,a) = R(s,a) +v Y _ P(s'|s,a)V™(s)

s'eS

@ Take action a, then follow the policy 7
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Policy Improvement

@ Compute state-action value of a policy ;
e Forsin S and ain A:

Q™ (s,a) = R(s,a) +~ Z P(s'|s,a)V™i(s")

s’eS

@ Compute new policy 741, for all s € S

mir1(s) = argmax Q™ (s,a) Vs € S
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MDP Policy Iteration (PI)

@ Seti=0

o Initialize mo(s) randomly for all states s

o While i == 0 or ||m; — mj_1]|1 > 0 (L1-norm, measures if the policy
changed for any state):

e V7™ « MDP V function policy evaluation of 7;
e 71 < Policy improvement
0o i=i+1
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Delving Deeper Into Policy Improvement Step

Qi(s,a) = R(s,a) +v ) _ P(s'[s, a)V™(s)

s'eS
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Delving Deeper Into Policy Improvement Step

Q™ (s,a) = R(s,a +fyz s'ls,a)VTi(s")

s’eS
maax Q7f,-(s7 a) > R(S,Tr,-(s)) + Z P(S/’S7 Fi(s))vﬂi(sl) _ \/Tri(s)
s’'eS

mir1(s) = argmax Q™ (s, a)
a

@ Suppose we take m;11(s) for one action, then follow 7; forever

e Our expected sum of rewards is at least as good as if we had always
followed 7;

@ But new proposed policy is to always follow 741 ...
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Monotonic Improvement in Policy

@ Definition
V™ > VT VT(s) > VT(s),Vs € S

@ Proposition: V™1 > V7i with strict inequality if 7; is suboptimal,
where 711 is the new policy we get from policy improvement on 7;
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Monotonic Improvement in Policy

V7i(s) < max Q™ (s,a)

=max R(s,a) +7 g P(s'|s,a)V™i(s")
a
s'eS
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Proof: Monotonic Improvement in Policy
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Check Your Understanding L2N3: Policy Iteration (PI)

@ Note: all the below is for finite state-action spaces

@ Seti=0

o Initialize mo(s) randomly for all states s

o While i == 0 or ||m; — mj_1]|1 > 0 (L1-norm, measures if the policy

changed for any state):

e V7 + MDP V function policy evaluation of 7;

e 71 < Policy improvement

o i=i+1
If policy doesn’t change, can it ever change again?
Select on participation poll: Yes / No / Not sure

Is there a maximum number of iterations of policy iteration?

Select on participation poll: Yes / No / Not sure
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Lecture Break after Policy Iteration
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Results for Check Your Understanding L2N3 Policy

Iteration

@ Note: all the below is for finite state-action spaces
@ Seti=0
o Initialize mo(s) randomly for all states s
e While i == 0 or ||m; — mj_1]|1 > 0 (L1-norm, measures if the policy
changed for any state):
e V7™ « MDP V function policy evaluation of 7;
e 71 < Policy improvement
e i=i+1
o If policy doesn’t change, can it ever change again?
@ Is there a maximum number of iterations of policy iteration?
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Check Your Understanding Explanation of Policy Not

Changing

@ Suppose for all s € S, mi11(s) = mi(s)
@ Then for all s € S, Q™i+1(s,a) = Q™ (s, a)

@ Recall policy improvement step

Q" (s,a) = R(s.a) +v ) P(s'|s,a)V™(s")

s'eS
mi+1(s) = argmax Q™ (s, a)
a

Tit2(s) = argmax Q™1 (s, a) = argmax Q™ (s, a)
a a
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MDP: Computing Optimal Policy and Optimal Value

@ Policy iteration computes infinite horizon value of a policy and then
improves that policy
@ Value iteration is another technique

o Idea: Maintain optimal value of starting in a state s if have a finite
number of steps k left in the episode
o lIterate to consider longer and longer episodes
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Bellman Equation and Bellman Backup Operators

@ Value function of a policy must satisfy the Bellman equation
VT(s) = R™(s) +7 Y _ P7(s'ls)V7(s)
s’'eS

@ Bellman backup operator

o Applied to a value function
o Returns a new value function
e Improves the value if possible

BV(s) = max R(s,a) + Z p(s’|s,a)V(s')
s’'eS

e BV yields a value function over all states s
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Value Iteration (VI)

@ Set k=1
o Initialize Vp(s) = 0 for all states s

@ Loop until convergence: (for ex. ||Vii1 — Villoo <€)
o For each state s

Vit1(s) = max
a

sa+’yz s'|s, a) Vi(s")

s’eS

e View as Bellman backup on value function

Vi1 = BV

Tks1(s) = arg max [R(s7 a)+~ E P(s'|s, a) Vi(s")
a
s’'eS
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Policy Iteration as Bellman Operations

@ Bellman backup operator B™ for a particular policy is defined as

B™V(s) = R™(s)+7 Y P"(s|s)V(s)
s'eS
@ Policy evaluation amounts to computing the fixed point of B™

@ To do policy evaluation, repeatedly apply operator until V stops

changing
VT =B"B"...B™V
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Policy Iteration as Bellman Operations

@ Bellman backup operator B™ for a particular policy is defined as

B™V(s) = R"(s) +7 Y P™(s'|s)V(s)

s'eS

@ To do policy improvement

mkr1(s) = argmax | R(s,a) + 7 g P(s'|s,a)V(s)
a
s'eS

Emma Brunskill (CS234 Reinforcement Learn Lecture 2: Making Sequences of Good Decis Winter 2023 49 / 66



Going Back to Value lteration (VI)

@ Set k=1
o Initialize Vp(s) = 0 for all states s

@ Loop until convergence: (for ex. ||Vi+1 — Villoo <€)
o For each state s

R(s,a) + Z P(s'|s,a)Vi(s")
s'eS

Vk+1(5) = maX
a

e Equivalently, in Bellman backup notation
Vi1 = BV,
@ To extract optimal policy if can act for k + 1 more steps,

m(s) = arg max [R(s, a)+ Z P(s'|s, a) Vk+1(5/)]
s'eS
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Contraction Operator

@ Let O be an operator,and |x| denote (any) norm of x
e If [OV — OV'| < |V — V'], then O is a contraction operator
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Will Value Iteration Converge?

@ Yes, if discount factor v < 1, or end up in a terminal state with
probability 1
@ Bellman backup is a contraction if discount factor, v < 1

o If apply it to two different value functions, distance between value
functions shrinks after applying Bellman equation to each
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Proof: Bellman Backup is a Contraction on V for v < 1

@ Let ||V — V/|| = maxs |V(s) — V/(s)| be the infinity norm

1BV, — BVj|| =
s'es s'es

max (R(s, a)+ Z P(s’|s, a)Vk(s')> — max (R(s7 )+~ Z P(s’|s, a/)\/j(s/)> H
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Proof: Bellman Backup is a Contraction on V for v < 1
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Opportunities for Out-of-Class Practice

@ Prove value iteration converges to a unique solution for discrete state
and action spaces with v < 1

@ Does the initialization of values in value iteration impact anything?
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Value lteration for Finite Horizon H

V. = optimal value if making k more decisions
m, = optimal policy if making k more decisions
e Initialize Vp(s) = 0 for all states s
@ Fork=1:H

o For each state s

R(s,a) + Z P(s'|s, a) Vi(s")
s'eS

Vit1(s) = max
a

Tky1(s) = arg max lR(s, a) + 7 E P(s'|s, a) Vi(s")
a
s’'eS
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Computing the Value of a Policy in a Finite Horizon

@ Alternatively can estimate by simulation

o Generate a large number of episodes

o Average returns

o Concentration inequalities bound how quickly average concentrates to
expected value

e Requires no assumption of Markov structure
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Example: Mars Rover

S1 S2 S3 Sy S5 Se S7
024 04 04 24 04 24
P 0.4 0.4 0.4 0.4 < 0.4 0.4
o oo O O O O O
0.6 0.2 0.2 0.2 0.2 0.2 0.6

@ Reward: +1 in s, +10 in s7, 0 in all other states
@ Sample returns for sample 4-step (H=4) episodes, v =1/2
@ S4,Ss5,S56,S7: 0—&—% ><O+% ><O+% x 10 =1.25
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Example: Mars Rover

S1 Sy S3 Sy Ss Se Sy
04 04] 04 04 . 04] 04]
Jos o o4 Jos o4 Jos

o O O O O U 0O

0.6 0.2 0.2 0.2 0.2 0.2 06

@ Reward: +1 in s3, +10 in s7, O in all other states

@ Sample returns for sample 4-step (H=4) episodes, start state s ,
y=1/2

o 4,55, 56,57 o+%xo+lxo+lx10=1.25

@ S4,S54,55,54: 0+?X0+1X0+EXO:0

@ S4,S3,5,51: 0+§x0+%x0+§x1:0.125
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Question: Finite Horizon Policies

@ Set k=1
o Initialize Vp(s) = 0 for all states s
o Loop until k ==

o For each state s

Vit1(s) = max R(s,a) + v E P(s'|s, a) Vi(s")
a
s'€S

mkr1(s) = argmax R(s,a) + g P(s'|s, a) Vi(s')
a
s'eS

Is optimal policy stationary (independent of time step) in finite horizon
tasks?
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Question: Finite Horizon Policies

@ Set k=1
o Initialize Vp(s) = 0 for all states s
o Loop until k == H:

o For each state s

Vir1(s) = max R(s,a) + v E P(s'|s, a) Vi(s")
a
s'eS

mkr1(s) = arg max R(s,a) + Z P(s'|s, a) Vi(s")
s'eS

Is optimal policy stationary (independent of time step) in finite horizon
tasks?
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Value vs Policy lteration

@ Value iteration:
o Compute optimal value for horizon = k
@ Note this can be used to compute optimal policy if horizon = k
e Increment k
@ Policy iteration
e Compute infinite horizon value of a policy

o Use to select another (better) policy
o Closely related to a very popular method in RL: policy gradient
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What You Should Know

Define MP, MRP, MDP, Bellman operator, contraction, model,
Q-value, policy
@ Be able to implement

e Value Iteration
e Policy Iteration

Give pros and cons of different policy evaluation approaches

Be able to prove contraction properties

Limitations of presented approaches and Markov assumptions
e Which policy evaluation methods require the Markov assumption?
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Where We Are

@ Last Time:

o Introduction
o Components of an agent: model, value, policy

@ This Time:
e Making good decisions given a Markov decision process
@ Next Time:
e Policy evaluation when don't have a model of how the world works
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Exercise L2E1: MDP 1 lteration of Policy Evaluation, Mars

Rover Example, Answer

e Dynamics: p(se|ss, a1) = 0.5, p(s7|ss,a1) = 0.5, ...
@ Reward: for all actions, +1 in state s;, +10 in state s7, 0 otherwise
o Let 7(s) = a1 Vs, assume V, =[10000010]and k=1, y=05
e Compute Vi i1(s6)
Vira(ss) = r(se) +7 Y _ p(s'Is6, a1) Vi(s') (1)
= 0+05%(0.5%x10+ 0.5%0) (2)
= 25 (3)
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Check Your Understanding L2N1: MDP 1 lteration of

Policy Evaluation, Mars Rover Example

Dynamics: p(se|ss, a1) = 0.5, p(s7|se,a1) = 0.5, ...
Reward: for all actions, +1 in state s;, +10 in state s7, 0 otherwise
Let w(s) = a1 Vs, assume V4, =[100000 10l and k=1, v=05

Vi(s) = r(s,m(s)) +7 Y p(s'ls, m(s)) Vil y(s")
s’eS
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