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L3N1 Refresh Your Knowledge [Polleverywhere Poll]

What is the max number of iterations of policy iteration in a tabular MDP?

1 |A||S |
2 |S ||A|
3 |A||S|
4 Unbounded
5 Not sure

In a tabular MDP asymptotically value iteration will always yield a policy
with the same value as the policy returned by policy iteration

1 True.
2 False
3 Not sure

Can value iteration require more iterations than |A||S| to compute the
optimal value function? (Assume |A| and |S | are small enough that each
round of value iteration can be done exactly).

1 True.
2 False
3 Not sure

Emma Brunskill (CS234 Reinforcement Learning)Lecture 3: Model-Free Policy Evaluation: Policy Evaluation Without Knowing How the World Works1Winter 2022 2 / 67



L3N1 Refresh Your Knowledge

What is the max number of iterations of policy iteration in a tabular MDP?

In a tabular MDP asymptotically value iteration will always yield a policy
with the same value as the policy returned by policy iteration

Can value iteration require more iterations than |A||S| to compute the
optimal value function? (Assume |A| and |S | are small enough that each
round of value iteration can be done exactly).
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Today’s Plan

Last Time:

Markov reward / decision processes
Policy evaluation & control when have true model (of how the world works)

Today

Policy evaluation without known dynamics & reward models

Next Time:

Control when don’t have a model of how the world works
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Evaluation through Direct Experience

Estimate expected return of policy π

Only using data from environment1 (direct experience)

Why is this important?

What properties do we want from policy evaluation algorithms?

1Assume today this experience comes from executing the policy π. Later will
consider how to do policy evaluation using data gathered from other policies.
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don’t have access to
true MDP models

Monte Carlo policy evaluation

Policy evaluation when don’t have a model of how the world work

Given on-policy samples

Temporal Difference (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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Recall

Definition of Return, Gt (for a MRP)

Discounted sum of rewards from time step t to horizon

Gt = rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · ·

Definition of State Value Function, V π(s)

Expected return starting in state s under policy π

V π(s) = Eπ[Gt |st = s] = Eπ[rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · · |st = s]

Definition of State-Action Value Function, Qπ(s, a)

Expected return starting in state s, taking action a and following policy π

Qπ(s, a) = Eπ[Gt |st = s, at = a]

= Eπ[rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · · |st = s, at = a]
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Recall: Dynamic Programming for Policy Evaluation

In a Markov decision process

V π(s) = Eπ[Gt |st = s]

= Eπ[rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · · |st = s]

= R(s, π(s)) + γ
∑
s′∈S

P(s ′|s, π(s))V π(s ′)

If given dynamics and reward models, can do policy evaluation through
dynamic programming

V π
k (s) = r(s, π(s)) + γ

∑
s′∈S

p(s ′|s, π(s))V π
k−1(s ′) (1)

Note: before convergence, Vk is an estimate of V π

In Equation 1 we are substituting
∑

s′∈S p(s ′|s, π(s))V π
k−1(s ′) for

Eπ[rt+1 + γ2rt+2 + γ3rt+3 + · · · |st = s].

This substitution is an instance of bootstrapping
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don’t have access to
true MDP models

Monte Carlo policy evaluation

Policy evaluation when don’t have a model of how the world work

Given on-policy samples

Temporal Difference (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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Monte Carlo (MC) Policy Evaluation

Gt = rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · ·+ γTi−1rTi in MDP M under policy π

V π(s) = Eτ∼π[Gt |st = s]

Expectation over trajectories τ generated by following π

Simple idea: Value = mean return

If trajectories are all finite, sample set of trajectories & average returns

Note: all trajectories may not be same length (e.g. consider MDP with
terminal states)
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Monte Carlo (MC) Policy Evaluation

If trajectories are all finite, sample set of trajectories & average returns

Does not require MDP dynamics/rewards

Does not assume state is Markov

Can be applied to episodic MDPs

Averaging over returns from a complete episode
Requires each episode to terminate
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First-Visit Monte Carlo (MC) On Policy Evaluation

Initialize N(s) = 0, G (s) = 0 ∀s ∈ S
Loop

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti

Define Gi,t = ri,t + γri,t+1 + γ2ri,t+2 + · · · γTi−1ri,Ti as return from time
step t onwards in ith episode

For each time step t until Ti ( the end of the episode i)

If this is the first time t that state s is visited in episode i

Increment counter of total first visits: N(s) = N(s) + 1
Increment total return G(s) = G(s) + Gi,t

Update estimate V π(s) = G(s)/N(s)
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Every-Visit Monte Carlo (MC) On Policy Evaluation

Initialize N(s) = 0, G (s) = 0 ∀s ∈ S
Loop

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti

Define Gi,t = ri,t + γri,t+1 + γ2ri,t+2 + · · · γTi−1ri,Ti as return from time
step t onwards in ith episode

For each time step t until Ti ( the end of the episode i)

state s is the state visited at time step t in episodes i
Increment counter of total visits: N(s) = N(s) + 1
Increment total return G(s) = G(s) + Gi,t

Update estimate V π(s) = G(s)/N(s)
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Worked Example MC On Policy Evaluation

Initialize N(s) = 0, G(s) = 0 ∀s ∈ S

Loop

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti

Gi,t = ri,t + γri,t+1 + γ2ri,t+2 + · · · γTi−1ri,Ti

For each time step t until Ti ( the end of the episode i)

If this is the first time t that state s is visited in episode i

Increment counter of total first visits: N(s) = N(s) + 1
Increment total return G(s) = G(s) + Gi,t

Update estimate V π(s) = G(s)/N(s)

Mars rover: R(s) = [ 1 0 0 0 0 0 +10]

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

Let γ < 1. Compute the first visit & every visit MC estimates of s2.
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Worked Example MC On Policy Evaluation

Initialize N(s) = 0, G(s) = 0 ∀s ∈ S

Loop

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti

Gi,t = ri,t + γri,t+1 + γ2ri,t+2 + · · · γTi−1ri,Ti

For each time step t until Ti ( the end of the episode i)

If this is the first time t that state s is visited in episode i

Increment counter of total first visits: N(s) = N(s) + 1
Increment total return G(s) = G(s) + Gi,t

Update estimate V π(s) = G(s)/N(s)

Mars rover: R = [ 1 0 0 0 0 0 +10] for any action

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

L γ < 1. Compare the first visit & every visit MC estimates of s2.
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Incremental Monte Carlo (MC) On Policy Evaluation

After each episode i = si ,1, ai ,1, ri ,1, si ,2, ai ,2, ri ,2, . . .

Define Gi,t = ri,t + γri,t+1 + γ2ri,t+2 + · · · as return from time step t
onwards in ith episode

For state s visited at time step t in episode i

Increment counter of total visits: N(s) = N(s) + 1
Update estimate

V π(s) = V π(s)
N(s)− 1

N(s)
+

Gi ,t

N(s)
= V π(s) +

1

N(s)
(Gi ,t − V π(s))
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Incremental Monte Carlo (MC) On Policy Evaluation

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti

Gi,t = ri,t + γri,t+1 + γ2ri,t+2 + · · · γTi−1ri,Ti

for i = 1 : Ti where Ti is the length of the i-th episode

V π(sit) = V π(sit) + α(Gi,t − V π(sit))

We will see many algorithms of this form with a learning rate, target, and
incremental update
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Check Your Understanding L3N1: Polleverywhere Poll
Incremental MC (State if each is True or False)

First or Every Visit MC

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti

Gi,t = ri,t + γri,t+1 + γ2ri,t+2 + · · · γTi−1ri,Ti

For all s, for first or every time t that state s is visited in episode i
N(s) = N(s) + 1, G(s) = G(s) + Gi,t

Update estimate V π(s) = G(s)/N(s)

Incremental MC

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti

Gi,t = ri,t + γri,t+1 + γ2ri,t+2 + · · · γTi−1ri,Ti

for t = 1 : Ti where Ti is the length of the i-th episode

V π(sit) = V π(sit) + α(Gi,t − V π(sit))

1 Incremental MC with α = 1 is the same as first visit MC

2 Incremental MC with α = 1
N(sit )

is the same as first visit MC

3 Incremental MC with α = 1
N(sit )

is the same as every visit MC

4 Incremental MC with α > 1
N(sit )

could be helpful in non-stationary domains
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Check Your Understanding L3N1: Polleverywhere Poll
Incremental MC Answers
First or Every Visit MC

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti

Gi,t = ri,t + γri,t+1 + γ2ri,t+2 + · · · γTi−1ri,Ti

For all s, for first or every time t that state s is visited in episode i
N(s) = N(s) + 1, G(s) = G(s) + Gi,t

Update estimate Vπ(s) = G(s)/N(s)

Incremental MC

Sample episode i = si,1, ai,1, ri,1, si,2, ai,2, ri,2, . . . , si,Ti

for t = 1 : Ti where Ti is the length of the i-th episode

Vπ(sit ) = Vπ(sit ) + α(Gi,t − Vπ(sit ))

1 Incremental MC with α = 1 is the same as first visit MC

2 Incremental MC with α = 1
N(sit )

is the same as first visit MC

3 Incremental MC with α = 1
N(sit )

is the same as every visit MC

4 Incremental MC with α > 1
N(sit )

could help in non-stationary domains
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Policy Evaluation Diagram
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Policy Evaluation Diagram

Emma Brunskill (CS234 Reinforcement Learning)Lecture 3: Model-Free Policy Evaluation: Policy Evaluation Without Knowing How the World Works1Winter 2022 21 / 67



Policy Evaluation Diagram
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Policy Evaluation Diagram
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MC Policy Evaluation

V π(s) = V π(s) + α(Gi ,t − V π(s))
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MC Policy Evaluation

V π(s) = V π(s) + α(Gi ,t − V π(s))
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Evaluation of the Quality of a Policy Estimation Approach

Consistency: with enough data, does the estimate converge to the true value
of the policy?

Computational complexity: as get more data, computational cost of
updating estimate

Memory requirements

Statistical efficiency (intuitively, how does the accuracy of the estimate
change with the amount of data)

Empirical accuracy, often evaluated by mean squared error
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Evaluation of the Quality of a Policy Estimation Approach:
Bias, Variance and MSE

Consider a statistical model that is parameterized by θ and that determines
a probability distribution over observed data P(x |θ)

Consider a statistic θ̂ that provides an estimate of θ and is a function of
observed data x

E.g. for a Gaussian distribution with known variance, the average of a set of
i.i.d data points is an estimate of the mean of the Gaussian

Definition: the bias of an estimator θ̂ is:

Biasθ(θ̂) = Ex|θ[θ̂]− θ

Definition: the variance of an estimator θ̂ is:

Var(θ̂) = Ex|θ[(θ̂ − E[θ̂])2]

Definition: mean squared error (MSE) of an estimator θ̂ is:

MSE (θ̂) = Var(θ̂) + Biasθ(θ̂)2

Emma Brunskill (CS234 Reinforcement Learning)Lecture 3: Model-Free Policy Evaluation: Policy Evaluation Without Knowing How the World Works1Winter 2022 27 / 67



Evaluation of the Quality of a Policy Estimation Approach:
Consistent Estimator

Consider a statistical model that is parameterized by θ and that determines
a probability distribution over observed data P(x |θ)

Consider a statistic θ̂ that provides an estimate of θ and is a function of
observed data x

Definition: the bias of an estimator θ̂ is:

Biasθ(θ̂) = Ex|θ[θ̂]− θ

Let n be the number of data points x used to estimate the parameter θ and
call the resulting estimate of θ using that data θ̂n

Then the estimator θ̂n is consistent if, for all ε > 0

lim
n→∞

Pr(|θ̂n − θ| > ε) = 0

If an estimator is unbiased (bias = 0) is it consistent?
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Properties of Monte Carlo On Policy Evaluators

Properties:

First-visit Monte Carlo

V π estimator is an unbiased estimator of true Eπ[Gt |st = s]
By law of large numbers, as N(s)→∞, V π(s)→ Eπ[Gt |st = s]

Every-visit Monte Carlo

V π every-visit MC estimator is a biased estimator of V π

But consistent estimator and often has better MSE

Incremental Monte Carlo

Properties depends on the learning rate α
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Properties of Monte Carlo On Policy Evaluators

Update is: V π(sit) = V π(sit) + αk(sj)(Gi,t − V π(sit))

where we have allowed α to vary (let k be the total number of updates done
so far, for state sit = sj)

If

∞∑
n=1

αn(sj) = ∞,

∞∑
n=1

α2
n(sj) < ∞

then incremental MC estimate will converge to true value of the policy
V π(sj)
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Monte Carlo (MC) Policy Evaluation Key Limitations

Generally high variance estimator

Reducing variance can require a lot of data
In cases where data is very hard or expensive to acquire, or the stakes are
high, MC may be impractical

Requires episodic settings

Episode must end before data from episode can be used to update V
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Monte Carlo (MC) Policy Evaluation Summary

Aim: estimate V π(s) given episodes generated under policy π

s1, a1, r1, s2, a2, r2, . . . where the actions are sampled from π

Gt = rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · · under policy π

V π(s) = Eπ[Gt |st = s]

Simple: Estimates expectation by empirical average (given episodes sampled
from policy of interest)

Updates V estimate using sample of return to approximate the expectation

Does not assume Markov process

Converges to true value under some (generally mild) assumptions

Note: Sometimes is preferred over dynamic programming for policy
evaluation even if know the true dynamics model and reward
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don’t have access to
true MDP models

Monte Carlo policy evaluation

Temporal Difference (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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Temporal Difference Learning

“If one had to identify one idea as central and novel to reinforcement
learning, it would undoubtedly be temporal-difference (TD) learning.” –
Sutton and Barto 2017

Combination of Monte Carlo & dynamic programming methods

Model-free

Can be used in episodic or infinite-horizon non-episodic settings

Immediately updates estimate of V after each (s, a, r , s ′) tuple
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Temporal Difference Learning for Estimating V

Aim: estimate V π(s) given episodes generated under policy π

Gt = rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · · in MDP M under policy π

V π(s) = Eπ[Gt |st = s]

Recall Bellman operator (if know MDP models)

BπV (s) = r(s, π(s)) + γ
∑
s′∈S

p(s ′|s, π(s))V (s ′)

In incremental every-visit MC, update estimate using 1 sample of return (for
the current ith episode)

V π(s) = V π(s) + α(Gi,t − V π(s))

Idea: have an estimate of V π, use to estimate expected return

V π(s) = V π(s) + α([rt + γV π(st+1)]− V π(s))
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Temporal Difference [TD(0)] Learning

Aim: estimate V π(s) given episodes generated under policy π

s1, a1, r1, s2, a2, r2, . . . where the actions are sampled from π

TD(0) learning / 1-step TD learning: update estimate towards target

V π(st) = V π(st) + α([rt + γV π(st+1)]︸ ︷︷ ︸
TD target

−V π(st))

TD(0) error:
δt = rt + γV π(st+1)− V π(st)

Can immediately update value estimate after (s, a, r , s ′) tuple

Don’t need episodic setting
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Temporal Difference [TD(0)] Learning Algorithm

Input: α
Initialize V π(s) = 0, ∀s ∈ S
Loop

Sample tuple (st , at , rt , st+1)

V π(st) = V π(st) + α([rt + γV π(st+1)]︸ ︷︷ ︸
TD target

−V π(st))
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Compute new V π at the end of 1 trajectory

Input: α
Initialize V π(s) = 0, ∀s ∈ S
Loop

Sample tuple (st , at , rt , st+1)

V π(st) = V π(st) + α([rt + γV π(st+1)]︸ ︷︷ ︸
TD target

−V π(st))

Example Mars rover: R = [ 1 0 0 0 0 0 +10] for any action

π(s) = a1 ∀s, γ = 1. any action from s1 and s7 terminates episode

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)
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Worked Example TD Learning

Input: α
Initialize V π(s) = 0, ∀s ∈ S
Loop

Sample tuple (st , at , rt , st+1)

V π(st) = V π(st) + α([rt + γV π(st+1)]︸ ︷︷ ︸
TD target

−V π(st))

Example:

Mars rover: R = [ 1 0 0 0 0 0 +10] for any action

π(s) = a1 ∀s, γ = 1. any action from s1 and s7 terminates episode

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

TD estimate of all states (init at 0) with α = 1, γ < 1?

First visit MC estimate of V of each state? [1 γ γ2 0 0 0 0]
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Temporal Difference (TD) Policy Evaluation

V π(st) = r(st , π(st)) + γ
∑
st+1

P(st+1|st , π(st))V π(st+1)

V π(st) = V π(st) + α([rt + γV π(st+1)]− V π(st))
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Check Your Understanding L3N2: Polleverywhere Poll
Temporal Difference [TD(0)] Learning Algorithm

Input: α
Initialize V π(s) = 0, ∀s ∈ S
Loop

Sample tuple (st , at , rt , st+1)

V π(st) = V π(st) + α([rt + γV π(st+1)]︸ ︷︷ ︸
TD target

−V π(st))

Select all that are true

1 If α = 0 TD will weigh the TD target more than the past V estimate

2 If α = 1 TD will update the V estimate to the TD target

3 If α = 1 TD in MDPs where the policy goes through states with multiple
possible next states, V may oscillate forever

4 There exist deterministic MDPs where α = 1 TD will converge
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Break
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Check Your Understanding L3N2: Polleverywhere Poll
Temporal Difference [TD(0)] Learning Algorithm

Input: α
Initialize V π(s) = 0, ∀s ∈ S
Loop

Sample tuple (st , at , rt , st+1)

V π(st) = V π(st) + α([rt + γV π(st+1)]︸ ︷︷ ︸
TD target

−V π(st))
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Summary: Temporal Difference Learning

Combination of Monte Carlo & dynamic programming methods

Model-free

Bootstraps and samples

Can be used in episodic or infinite-horizon non-episodic settings

Immediately updates estimate of V after each (s, a, r , s ′) tuple

Biased estimator (early on will be influenced by initialization, and won’t be
unibased estimator)

Generally lower variance than Monte Carlo policy evaluation

Consistent estimator if learning rate α satisfies same conditions specified for
incremental MC policy evaluation to converge
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don’t have access to
true MDP models

Monte Carlo policy evaluation

Temporal Difference (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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Certainty Equivalence V π MLE MDP Model Estimates

Model-based option for policy evaluation without true models

After each (si , ai , ri , si+1) tuple

Recompute maximum likelihood MDP model for (s, a)

P̂(s ′|s, a) =
1

N(s, a)

i∑
k=1

1(sk = s, ak = a, sk+1 = s ′)

r̂(s, a) =
1

N(s, a)

i∑
k=1

1(sk = s, ak = a)rk

Compute V π using MLE MDP 2 (using any dynamic programming method
from lecture 2))

2Requires initializing for all (s, a) pairs
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Mars rover: R = [ 1 0 0 0 0 0 +10] for any action

π(s) = a1 ∀s, γ = 1. any action from s1 and s7 terminates episode

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

First visit MC estimate of V of each state? [1 γ γ2 0 0 0 0]

TD estimate of all states (init at 0) with α = 1 is [1 0 0 0 0 0 0]

Optional exercise: What is the certainty equivalent estimate?

r̂ = [1 0 0 0 0 0 0], p̂(terminate|s1, a1) = p̂(s2|s3, a1) = 1
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Certainty Equivalence V π MLE MDP Model Estimates

Model-based option for policy evaluation without true models

After each (s, a, r , s ′) tuple

Recompute maximum likelihood MDP model for (s, a)

P̂(s ′|s, a) =
1

N(s, a)

K∑
k=1

Lk−1∑
t=1

1(sk,t = s, ak,t = a, sk,t+1 = s ′)

r̂(s, a) =
1

N(s, a)

K∑
k=1

Lk−1∑
t=1

1(sk,t = s, ak,t = a)rt,k

Compute V π using MLE MDP

Cost: Updating MLE model and MDP planning at each update (O(|S |3) for
analytic matrix solution, O(|S |2|A|) for iterative methods)

Very data efficient and very computationally expensive

Consistent (will converge to right estimate for Markov models)

Can also easily be used for off-policy evaluation (which we will shortly define
and discuss)
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This Lecture: Policy Evaluation

Estimating the expected return of a particular policy if don’t have access to
true MDP models

Monte Carlo policy evaluation

Policy evaluation when don’t have a model of how the world work

Given on-policy samples

Temporal Difference (TD)

Certainty Equivalence with dynamic programming

Batch policy evaluation
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Batch MC and TD

Batch (Offline) solution for finite dataset

Given set of K episodes
Repeatedly sample an episode from K
Apply MC or TD(0) to the sampled episode

What do MC and TD(0) converge to?
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AB Example: (Ex. 6.4, Sutton & Barto, 2018)

Two states A,B with γ = 1

Given 8 episodes of experience:

A, 0,B, 0
B, 1 (observed 6 times)
B, 0

Imagine run TD updates over data infinite number of times

V (B) =
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AB Example: (Ex. 6.4, Sutton & Barto, 2018)

TD Update: V π(st) = V π(st) + α([rt + γV π(st+1)]︸ ︷︷ ︸
TD target

−V π(st))

Two states A,B with γ = 1

Given 8 episodes of experience:

A, 0,B, 0
B, 1 (observed 6 times)
B, 0

Imagine run TD updates over data infinite number of times

V (B) = 0.75 by TD or MC

What about V (A)?
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AB Example: (Ex. 6.4, Sutton & Barto, 2018)

TD Update: V π(st) = V π(st) + α([rt + γV π(st+1)]︸ ︷︷ ︸
TD target

−V π(st))

Two states A,B with γ = 1

Given 8 episodes of experience:

A, 0,B, 0
B, 1 (observed 6 times)
B, 0

Imagine run TD updates over data infinite number of times

V (B) = 0.75 by TD or MC

What about V (A)?
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Batch MC and TD: Converges

Monte Carlo in batch setting converges to min MSE (mean squared error)

Minimize loss with respect to observed returns
In AB example, V (A) = 0

TD(0) converges to DP policy V π for the MDP with the maximum
likelihood model estimates

Aka same as dynamic programming with certainty equivalence!

Maximum likelihood Markov decision process model

P̂(s ′|s, a) =
1

N(s, a)

i∑
k=1

1(sk = s, ak = a, sk+1 = s ′)

r̂(s, a) =
1

N(s, a)

i∑
k=1

1(sk = s, ak = a)rk

Compute V π using this model
In AB example, V (A) = 0.75
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Some Important Properties to Evaluate Model-free Policy
Evaluation Algorithms

Data efficiency & Computational efficiency

In simple TD(0), use (s, a, r , s ′) once to update V (s)

O(1) operation per update
In an episode of length L, O(L)

In MC have to wait till episode finishes, then also O(L)

MC can be more data efficient than simple TD

But TD exploits Markov structure

If in Markov domain, leveraging this is helpful

Dynamic programming with certainty equivalence also uses Markov structure
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Summary: Policy Evaluation

Estimating the expected return of a particular policy if don’t have access
to true MDP models. Ex. evaluating average purchases per session of new
product recommendation system

Monte Carlo policy evaluation

Policy evaluation when we don’t have a model of how the world works

Given on policy samples
Given off policy samples

Temporal Difference (TD)

Dynamic Programming with certainty equivalence

Metrics to evaluate and compare algorithms

Robustness to Markov assumption
Bias/variance characteristics
Data efficiency
Computational efficiency
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Today’s Plan

Last Time:

Markov reward / decision processes
Policy evaluation & control when have true model (of how the world works)

Today

Policy evaluation without known dynamics & reward models

Next Time:

Control when don’t have a model of how the world works
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Recall: Dynamic Programming for Policy Evaluation

If we knew dynamics and reward model, we can do policy evaluation

Initialize V π
0 (s) = 0 for all s

For k = 1 until convergence

For all s in S

V π
k (s) = r(s, π(s)) + γ

∑
s′∈S

p(s ′|s, π(s))V π
k−1(s ′)

V π
k (s) is exactly the k-horizon value of state s under policy π

V π
k (s) is an estimate of the infinite horizon value of state s under policy π

V π(s) = Eπ[Gt |st = s] ≈ Eπ[rt + γVk−1|st = s]
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Dynamic Programming Policy Evaluation
V π(s)← Eπ[rt + γVk−1|st = s]

Bootstrapping: Update for V uses an estimate
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Dynamic Programming Policy Evaluation
V π(s)← Eπ[rt + γVk−1|st = s]

Bootstrapping: Update for V uses an estimate
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What about when we don’t know the models?
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Mars rover: R = [ 1 0 0 0 0 0 +10] for any action

π(s) = a1 ∀s, γ = 1. any action from s1 and s7 terminates episode

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

First visit MC estimate of V of each state? [1 γ γ2 0 0 0 0]

TD estimate of all states (init at 0) with α = 1 is [1 0 0 0 0 0 0]

What is the certainty equivalent estimate?

r̂ = [1 0 0 0 0 0 0], p̂(terminate|s1, a1) = p̂(s2|s3, a1) = 1

p̂(s1|s2, a1) = .5, p̂(s2|s2, a1) = .5, V = [1 1 1 0 0 0 0]
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Check Your Understanding L3N3: Properties of Algorithms
for Evaluation.

DPCE MC TD

Can use w/out access to true MDP models

Usable in continuing (non-episodic) setting

Assumes Markov process

Converges to true value in limit3

Unbiased estimate of value

DPCE = Dynamic Programming w/certainty equivalence estimates, MC =
Monte Carlo, TD = Temporal Difference

3For tabular representations of value function. More on this in later lectures
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Check Your Understanding L3N3: Properties of Algorithms
for Evaluation.

DPCE MC TD

Can use w/out access to true MDP models X X X

Usable in continuing (non-episodic) setting X X

Assumes Markov process X X

Converges to true value in limit4 X X X

Unbiased estimate of value X

DPCE = Dynamic Programming w/certainty equivalence estimates, MC =
Monte Carlo, TD = Temporal Difference

4For tabular representations of value function. More on this in later lectures
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Some Important Properties to Evaluate Model-free Policy
Evaluation Algorithms

Bias/variance characteristics

Data efficiency

Computational efficiency

Mostly focus on comparing MC and TD methods but we will connect back
to dynamic programming with certainty equivalence methods later
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Bias/Variance of Model-free Policy Evaluation Algorithms

Return Gt is an unbiased estimate of V π(st)

TD target [rt + γV π(st+1)] is a biased estimate of V π(st)

But often much lower variance than a single return Gt

Return function of multi-step sequence of random actions, states & rewards

TD target only has one random action, reward and next state

MC

Unbiased (for first visit)
High variance
Consistent (converges to true) even with function approximation

TD

Some bias
Lower variance
TD(0) converges to true value with tabular representation
TD(0) does not always converge with function approximation
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Mars rover: R = [ 1 0 0 0 0 0 +10] for any action

π(s) = a1 ∀s, γ = 1. any action from s1 and s7 terminates episode

Trajectory = (s3, a1, 0, s2, a1, 0, s2, a1, 0, s1, a1, 1, terminal)

First visit MC estimate of V of each state? [1 1 1 0 0 0 0]

TD estimate of all states (init at 0) with α = 1 is [1 0 0 0 0 0 0]

TD(0) only uses a data point (s, a, r , s ′) once

Monte Carlo takes entire return from s to end of episode
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