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Class Structure

Last time: Model-free value function approximation control and Deep
Q-learning

This time: Model-free value function approximation and more DQN

Next time: Policy search in large spaces / policy gradient methods
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Refresh Your Understanding: Modified AB Example: (Ex.
6.4, Sutton & Barto, 2018)

Two states A,B with γ = 1. Policy evaluation.

Given 8 episodes of experience:

A, 1,B, 0 (observed 2 times) (state, reward, next state, next reward)
B, 1 (observed 4 times) (state, reward)
B, 0 (observed 2 times) (state, reward)

Imagine run TD updates over data infinite number of times, and
(separately) MC over data an infinite number of times?

What is V TD(B) and V TD(A)? What is VMC (B) and VMC (A)?
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Refresh Your Understanding: Modified AB Example: (Ex.
6.4, Sutton & Barto, 2018). Solution

Two states A,B with γ = 1

Given 8 episodes of experience:

A, 1,B, 0 (observed 2 times)
B, 1 (observed 4 times)
B, 0 (observed 2 times)

Imagine run TD updates over data infinite number of times, and
(separately) MC over data an infinite number of times?

What is V TD(B) and V TD(A)? What is VMC (B) and VMC (A)?
V(B) = 0.5 for TD and MC. V(A) = 1.5 for TD. V(A) = 1.0 for MC.

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 6: Model-free RL with Value Function Approximation Continued 1Winter 2023 4 / 46



Table of Contents

1 Model-free Function Approximation Convergence
Policy Evaluation
Model-free Control with Linear Function Approximation Convergence
Maximization bias
Double Q-learning
Double DQN

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 6: Model-free RL with Value Function Approximation Continued 1Winter 2023 5 / 46



Table of Contents

1 Model-free Function Approximation Convergence
Policy Evaluation
Model-free Control with Linear Function Approximation Convergence
Maximization bias
Double Q-learning
Double DQN

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 6: Model-free RL with Value Function Approximation Continued 1Winter 2023 6 / 46



Convergence Guarantees for Linear Value Function
Approximation for Policy Evaluation

Define the mean squared error of a linear value function
approximation for a particular policy π relative to the true value as

MSVEµ(w) =
∑
s∈S

µ(s)(V π(s)− V̂ π(s; w))2

where

µ(s): probability of visiting state s under policy π . Note
∑

s µ(s) = 1

V̂ π(s; w) = x(s)Tw , a linear value function approximation
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Convergence Guarantees for Linear Value Function
Approximation for Policy Evaluation

Define the mean squared error of a linear value function
approximation for a particular policy π relative to the true value as

MSVEµ(w) =
∑
s∈S

µ(s)(V π(s)− V̂ π(s; w))2

where

µ(s): probability of visiting state s under policy π . Note
∑

s µ(s) = 1

V̂ π(s; w) = x(s)Tw , a linear value function approximation

Monte Carlo policy evaluation with VFA converges to the weights
wMC which has the minimum mean squared error possible with
respect to the distribution µ:

MSVEµ(wMC ) = min
w

∑
s∈S

µ(s)(V π(s)− V̂ π(s; w))2
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Convergence Guarantees for TD Linear VFA for Policy
Evaluation: Preliminaries

For infinite horizon, the Markov Chain defined by a MDP with a
particular policy will eventually converge to a probability distribution
over states d(s)

d(s) is called the stationary distribution over states of π∑
s d(s) = 1

d(s) satisfies the following balance equation:

d(s ′) =
∑
s

∑
a

π(a|s)p(s ′|s, a)d(s)
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Convergence Guarantees for Linear Value Function
Approximation for Policy Evaluation

Define the mean squared error of a linear value function
approximation for a particular policy π relative to the true value given
the distribution d as

MSVEd(w) =
∑
s∈S

d(s)(V π(s)− V̂ π(s; w))2

where
d(s): stationary distribution of π in the true decision process
V̂ π(s; w) = x(s)Tw , a linear value function approximation

TD(0) policy evaluation with VFA converges to weights wTD which is
within a constant factor of the min mean squared error possible given
distribution d :

MSVEd(wTD) ≤ 1

1− γ
min
w

∑
s∈S

d(s)(V π(s)− V̂ π(s; w))2
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Check Your Understanding L5N1: Poll

TD(0) policy evaluation with VFA converges to weights wTD which is
within a constant factor of the min mean squared error possible for
distribution d :

MSVEd(wTD) ≤ 1

1− γ
min
w

∑
s∈S

d(s)(V π(s)− V̂ π(s; w))2

If the VFA is a tabular representation (one feature for each state),
what is the MSVEd for TD?

1 Depends on the problem

2 MSVE = 0 for TD

3 Not sure
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Check Your Understanding L5N1 : Poll

TD(0) policy evaluation with VFA converges to weights wTD which is
within a constant factor of the min mean squared error possible for
distribution d :

MSVEd(wTD) ≤ 1

1− γ
min
w

∑
s∈S

d(s)(V π(s)− V̂ π(s; w))2

If the VFA is a tabular representation (one feature for each state),
what is the MSVEd for TD?

MSVE = 0 for TD
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Recall Incremental Model-Free Control Approaches

Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

In Monte Carlo methods, use a return Gt as a substitute target

∆w = α(Gt − Q̂(st , at ; w))∇w Q̂(st , at ; w)

For SARSA instead use a TD target r + γQ̂(s ′, a′; w) which leverages
the current function approximation value

∆w = α(r + γQ̂(s ′, a′; w)− Q̂(s, a; w))∇w Q̂(s, a; w)

For Q-learning instead use a TD target r + γmaxa′ Q̂(s ′, a′; w) which
leverages the max of the current function approximation value

∆w = α(r + γmax
a′

Q̂(s ′, a′; w)− Q̂(s, a; w))∇w Q̂(s, a; w)
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Challenges of Off Policy Control: Baird Example 1

Behavior policy and target policy are not identical
Value can diverge

1Figure from Sutton and Barto 2018
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Convergence of TD Methods with VFA

Informally, updates involve doing an (approximate) Bellman backup
followed by best trying to fit underlying value function to a particular
feature representation

Bellman operators are contractions, but value function approximation
fitting can be an expansion

Geoff Gordon 1995.
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Convergence of Policy Evaluation and Control Methods
with VFA

Algorithm Tabular Linear VFA General VFA

Monte-Carlo Control

Sarsa

Q-learning
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Active Area: Off Policy Learning with Function
Approximation

Extensive work in better TD-style algorithms with value function
approximation, some with convergence guarantees: see Chp 11 SB

Will come up further later in this course
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Value Function Approximation1

1Figure from Sutton and Barto 2018
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Maximization Bias2

Consider single-state MDP (|S | = 1) with 2 actions, and both actions have 0-mean
random rewards, (E(r |a = a1) = E(r |a = a2) = 0).

Then Q(s, a1) = Q(s, a2) = 0 = V (s)

Assume there are prior samples of taking action a1 and a2

Let Q̂(s, a1), Q̂(s, a2) be the finite sample estimate of Q

Use an unbiased estimator for Q: e.g. Q̂(s, a1) = 1
n(s,a1)

∑n(s,a1)
i=1 ri (s, a1)

Let π̂ = arg maxa Q̂(s, a) be the greedy policy w.r.t. the estimated Q̂

2Example from Mannor, Simester, Sun and Tsitsiklis. Bias and Variance
Approximation in Value Function Estimates. Management Science 2007
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Maximization Bias3 Proof

Consider single-state MDP (|S | = 1) with 2 actions, and both actions have
0-mean random rewards, (E(r |a = a1) = E(r |a = a2) = 0).

Then Q(s, a1) = Q(s, a2) = 0 = V (s)

Assume there are prior samples of taking action a1 and a2

Let Q̂(s, a1), Q̂(s, a2) be the finite sample estimate of Q

Use an unbiased estimator for Q: e.g. Q̂(s, a1) = 1
n(s,a1)

∑n(s,a1)
i=1 ri (s, a1)

Let π̂ = arg maxa Q̂(s, a) be the greedy policy w.r.t. the estimated Q̂

Even though each estimate of the state-action values is unbiased, the

estimate of π̂’s value V̂ π̂ can be biased:

V̂ π̂(s) = E[max Q̂(s, a1), Q̂(s, a2)]
≥ max[E[Q̂(s, a1)], [Q̂(s, a2)]]
= max [0, 0] = V π,
where the inequality comes from Jensen’s inequality.

3Example from Mannor, Simester, Sun and Tsitsiklis. Bias and Variance
Approximation in Value Function Estimates. Management Science 2007
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Double Q-Learning

The greedy policy w.r.t. estimated Q values can yield a maximization
bias during finite-sample learning

Avoid using max of estimates as estimate of max of true values

Instead split samples and use to create two independent unbiased
estimates of Q1(s1, ai ) and Q2(s1, ai ) ∀a.

Use one estimate to select max action: a∗ = arg maxa Q1(s1, a)
Use other estimate to estimate value of a∗: Q2(s, a∗)
Yields unbiased estimate: E(Q2(s, a∗)) = Q(s, a∗)
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Double Q-Learning

The greedy policy w.r.t. estimated Q values can yield a maximization
bias during finite-sample learning

Avoid using max of estimates as estimate of max of true values

Instead split samples and use to create two independent unbiased
estimates of Q1(s1, ai ) and Q2(s1, ai ) ∀a.

Use one estimate to select max action: a∗ = arg maxa Q1(s1, a)
Use other estimate to estimate value of a∗: Q2(s, a∗)
Yields unbiased estimate: E(Q2(s, a∗)) = Q(s, a∗)

Why is this an unbiased estimate of the max state-action value?
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Double Q-Learning

The greedy policy w.r.t. estimated Q values can yield a maximization
bias during finite-sample learning

Avoid using max of estimates as estimate of max of true values

Instead split samples and use to create two independent unbiased
estimates of Q1(s1, ai ) and Q2(s1, ai ) ∀a.

Use one estimate to select max action: a∗ = arg maxa Q1(s1, a)
Use other estimate to estimate value of a∗: Q2(s, a∗)
Yields unbiased estimate: E(Q2(s, a∗)) = Q(s, a∗)

Why is this an unbiased estimate of the max state-action value?
Using independent samples to estimate the value

If acting online, can alternate samples used to update Q1 and Q2,
using the other to select the action chosen

Next slides extend to full MDP case (with more than 1 state)
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Double Q-Learning

1: Initialize Q1(s, a) and Q2(s, a),∀s ∈ S , a ∈ A t = 0, initial state st = s0

2: loop
3: Select at using ε-greedy π(s) = arg maxa Q1(st , a) + Q2(st , a)
4: Observe (rt , st+1)
5: if (with 0.5 probability) then
6: Q1(st , at)← Q1(st , at) + α(rt + γQ2(st+1, arg maxa Q1(st+1, a))− Q1(st , at))
7: else
8: Q2(st , at)← Q2(st , at) + α(rt + γQ1(st+1, arg maxa Q2(st+1, a))− Q2(st , at))
9: end if

10: t = t + 1
11: end loop

Compared to Q-learning, how does this change the: memory requirements,

computation requirements per step, amount of data required?
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Double Q-Learning

1: Initialize Q1(s, a) and Q2(s, a),∀s ∈ S , a ∈ A t = 0, initial state st = s0

2: loop
3: Select at using ε-greedy π(s) = arg maxa Q1(st , a) + Q2(st , a)
4: Observe (rt , st+1)
5: if (with 0.5 probability) then
6: Q1(st , at)← Q1(st , at) + α(rt + γQ2(st+1, arg maxa Q1(st+1, a))− Q1(st , at))
7: else
8: Q2(st , at)← Q2(st , at) + α(rt + γQ1(st+1, arg maxa Q2(st+1, a))− Q2(st , at))
9: end if

10: t = t + 1
11: end loop

Compared to Q-learning, how does this change the: memory requirements,
computation requirements per step, amount of data required?

Doubles the memory, same computation requirements, data requirements are

subtle– might reduce amount of exploration needed due to lower bias
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Double Q-Learning (Figure 6.7 in Sutton and Barto 2018)

Due to the maximization bias, Q-learning spends much more time
selecting suboptimal actions than double Q-learning.
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Recall DQN

Deep Q-learning (DQN): Q-learning with deep neural networks and
Experience replay
Fixed Q-targets

∆w = α(r + γmax
a′

Q̂(s ′, a′; w−)− Q̂(s, a; w))∇w Q̂(s, a; w)
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Recall DQN Pseudocode

1: Input C , α, D = {}, Initialize w , w− = w , t = 0

2: Get initial state s0

3: loop

4: Sample action at given ε-greedy policy for current Q̂(st , a; w)

5: Observe reward rt and next state st+1

6: Store transition (st , at , rt , st+1) in replay buffer D

7: Sample random minibatch of tuples (si , ai , ri , si+1) from D

8: for j in minibatch do

9: if episode terminated at step i + 1 then

10: yi = ri
11: else
12: yi = ri + γ maxa′ Q̂(si+1, a

′; w−)

13: end if
14: Do gradient descent step on (yi − Q̂(si , ai ; w))2 for parameters w : ∆w = α(yi − Q̂(si , ai ; w))∇w Q̂(si , ai ; w)

15: end for
16: t = t + 1
17: if mod(t,C) == 0 then

18: w− ← w
19: end if
20: end loop
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Double DQN

Double DQN (Deep Reinforcement Learning with Double Q-Learning,
Van Hasselt et al, AAAI 2016)

Extend double Q learning to DQN

Current Q-network w is used to select actions

Older Q-network w− is used to evaluate actions

∆w = α(r + γ

Action evaluation: w−︷ ︸︸ ︷
Q̂(arg max

a′
Q̂(s ′, a′; w)︸ ︷︷ ︸

Action selection: w

; w−)−Q̂(s, a; w))
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Double DQN

Double DQN (Deep Reinforcement Learning with Double Q-Learning,
Van Hasselt et al, AAAI 2016)

Extend double Q learning to DQN

Current Q-network w is used to select actions

Older Q-network w− is used to evaluate actions

∆w = α(r + γ

Action evaluation: w−︷ ︸︸ ︷
Q̂(arg max

a′
Q̂(s ′, a′; w)︸ ︷︷ ︸

Action selection: w

; w−)−Q̂(s, a; w))

How is this different from fixed target network update used in DQN?
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Double DQN

Double DQN (Deep Reinforcement Learning with Double Q-Learning,
Van Hasselt et al, AAAI 2016)

Extend double Q learning to DQN

Current Q-network w is used to select actions

Older Q-network w− is used to evaluate actions

∆w = α(r + γ

Action evaluation: w−︷ ︸︸ ︷
Q̂(arg max

a′
Q̂(s ′, a′; w)︸ ︷︷ ︸

Action selection: w

; w−)−Q̂(s, a; w))

How is this different from fixed target network update used in DQN?
In DQN the same weights w− were used to choose the best action at
s ′ and evaluate its value Q̂(s ′, a′; w−)
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Double DQN

Figure: van Hasselt, Guez, Silver, 2015
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Double DQN

Double DQN (Deep Reinforcement Learning with Double Q-Learning,
Van Hasselt et al, AAAI 2016)

Extend double Q learning to DQN

Current Q-network w is used to select actions

Older Q-network w− is used to evaluate actions

∆w = α(r + γ

Action evaluation: w−︷ ︸︸ ︷
Q̂(arg max

a′
Q̂(s ′, a′; w)︸ ︷︷ ︸

Action selection: w

; w−)−Q̂(s, a; w))

Very small code change, often can lead to significantly
improved results
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Rainbow: Combining Improvements in Deep Reinforcement
Learning. Hessel et al. 2018 (DeepMind)

Figure: Median human-normalized performance across 57 Atari games. Curves
smoothed with a moving avg over 5 points.
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Many new methods

One (of many) significant ideas: use additional objectives

Figure: Data-efficient reinforcement learning with self-predictive
representations. Schwarzer et al. ICLR 2021.
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What is Enabling Progress?

Benchmark tasks. Atari, Atari 100k, Mujoco, ...

Standing on the shoulders of giants... : building on past algorithms

and code bases for said algorithms
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Model-free value function approximation RL: What You
Should Know

Be able to derive weight update for generic function approximation
for Q/V π

Understand various (MC/SARSA/Q-learning) targets used when
updating Q function

Know what TD vs MC converge to for policy evaluation with a linear
function approximator

Be able to implement DQN

Define the maximization bias and give one tool for alleviating it
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Class Structure

Last time: Model-free value function approximation control and Deep
Q-learning

This time: Model-free value function approximation and more DQN

Next time: Policy search in large spaces / policy gradient methods
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Lecture 6: Refresh Your Knowledge

In TD learning with linear VFA (select all):
1 w = w + α(r(st) + γx(st+1)Tw − x(st)

Tw)x(st)
2 V (s) = w(s)x(s)
3 Asymptotic convergence to the true best minimum MSE linear

representable V (s) is guaranteed for α ∈ (0, 1), γ < 1.
4 Not sure
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Lecture 6: Refresh Your Knowledge Solutions

In TD learning with linear VFA (select all):
1 w = w + α(r(st) + γx(st+1)Tw − x(st)

Tw)x(st)
2 V (s) = w(s)x(s)
3 Asymptotic convergence to the true best minimum MSE linear

representable V (s) is guaranteed for α ∈ (0, 1), γ < 1.
4 Not sure

Answer: 1 is true. Convergence is not guaranteed to the best, the resulting
one may still be worse than the best MSE solution by a factor of 1

1−γ . It is
also important to know that this is with respect to the stationary

distirbution d(s). Also note the weights do not depend on the state.
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