
CS234: Reinforcement Learning – Problem Session #1

Spring 2023-2024

Problem 1

Suppose we have an infinite-horizon, discounted MDP M = ⟨S,A,R, T , γ⟩ with a finite state-action space,
|S×A| < ∞ and 0 ≤ γ < 1. For any two arbitrary sets X and Y, we denote the class of all functions mapping
from X to Y as {X → Y} ≜ {f | f : X → Y}. In the questions that follow, let Q,Q′ ∈ {S ×A → R} be any
two arbitrary action-value functions and consider any fixed state s ∈ S. Without loss of generality, you may
assume that Q(s, a) ≥ Q′(s, a), ∀(s, a) ∈ S ×A.
Solution: The first three parts of this question are proven simultaneously and in more generality via Theorem
8 of Littman and Szepesvári [1996].

1. Prove that |max
a∈A

Q(s, a)−max
a′∈A

Q′(s, a′)| ≤ max
a∈A

|Q(s, a)−Q′(s, a)|.

Solution: We can start by simply ignoring the absolute value signs on the left-hand side. Let
a⋆ = argmax

a∈A
Q(s, a). Then,

max
a∈A

Q(s, a)−max
a′∈A

Q′(s, a′) = Q(s, a⋆)−max
a′∈A

Q′(s, a′)

≤ Q(s, a⋆)−Q′(s, a⋆)

≤ max
a∈A

(Q(s, a)−Q′(s, a))

≤ max
a∈A

|Q(s, a)−Q′(s, a)|.

Now, take absolute values on both sides of the inequality (the left-hand side is already non-negative)
to get

|max
a∈A

Q(s, a)−max
a′∈A

Q′(s, a′)| ≤ max
a∈A

|Q(s, a)−Q′(s, a)|.

2. Prove that |min
a∈A

Q(s, a)− min
a′∈A

Q′(s, a′)| ≤ max
a∈A

|Q(s, a)−Q′(s, a)|.

Solution: We can start by simply ignoring the absolute value signs on the left-hand side. Let
a⋆ = argmin

a′∈A
Q′(s, a′). Then,

min
a∈A

Q(s, a)− min
a′∈A

Q′(s, a′) = min
a∈A

Q(s, a)−Q′(s, a⋆)

≤ Q(s, a⋆)−Q′(s, a⋆)

≤ max
a∈A

(Q(s, a)−Q′(s, a))

≤ max
a∈A

|Q(s, a)−Q′(s, a)|.

Now, take absolute values on both sides of the inequality (the left-hand side is already non-negative)
to get

|min
a∈A

Q(s, a)− min
a′∈A

Q′(s, a′)| ≤ max
a∈A

|Q(s, a)−Q′(s, a)|.
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3. Prove that
∣∣∣ 1
|A|

∑
a∈A

Q(s, a)− 1
|A|

∑
a′∈A

Q′(s, a′)
∣∣∣ ≤ max

a∈A
|Q(s, a)−Q′(s, a)|.

Solution: We can start by simply ignoring the absolute value signs on the left-hand side.

1

|A|
∑
a∈A

Q(s, a)− 1

|A|
∑
a′∈A

Q′(s, a′) =
1

|A|
∑
a∈A

(Q(s, a)−Q′(s, a))

≤ 1

|A|
∑
a∈A

|Q(s, a)−Q′(s, a)|

≤ 1

|A|
∑
a∈A

max
a′∈A

|Q(s, a′)−Q′(s, a′)|

=
1

|A|
· |A| ·max

a′∈A
|Q(s, a′)−Q′(s, a′)|

= max
a∈A

|Q(s, a)−Q′(s, a)|.

Now, take absolute values on both sides of the inequality (the left-hand side is already non-negative)
to get ∣∣∣ 1

|A|
∑
a∈A

Q(s, a)− 1

|A|
∑
a′∈A

Q′(s, a′)
∣∣∣ ≤ max

a∈A
|Q(s, a)−Q′(s, a)|.

4. Prove that, for any parameter ω ∈ R,1∣∣∣∣ 1ω log

(
1

|A|
∑
a∈A

exp (ω ·Q(s, a))

)
− 1

ω
log

(
1

|A|
∑
a′∈A

exp (ω ·Q′(s, a′))

)∣∣∣∣ ≤ max
a∈A

|Q(s, a)−Q′(s, a)|.

Hint: define and introduce ∆(a) = Q(s, a)−Q′(s, a) for a ∈ A.

Solution: This is the so-called mellowmax operator introduced by Asadi and Littman [2017] which,
unlike the Boltzmann softmax operator (see Lemma C.3 of Littman [1996]), obeys the stated property.
Let ∆(a) = Q(s, a)−Q′(s, a)∣∣∣∣ 1ω log

(
1

|A|
∑
a∈A

exp (ω ·Q(s, a))

)
− 1

ω
log

(
1

|A|
∑
a′∈A

exp (ω ·Q′(s, a′))

)∣∣∣∣ = ∣∣∣∣ 1ω log


∑
a∈A

exp (ω ·Q(s, a))∑
a′∈A

exp (ω ·Q′(s, a′))

∣∣∣∣
=

∣∣∣∣ 1ω log


∑
a∈A

exp (ω · (Q′(s, a) + ∆(a)))∑
a′∈A

exp (ω ·Q′(s, a′))

∣∣∣∣

≤
∣∣∣∣ 1ω log


∑
a∈A

exp

(
ω ·
(
Q′(s, a) + max

a′∈A
∆(a′)

))
∑

a′∈A
exp (ω ·Q′(s, a′))

∣∣∣∣
=

∣∣∣∣ 1ω log

exp

(
ω ·max

a′∈A
∆(a′)

) ∑
a∈A

exp (ω ·Q′(s, a))∑
a′∈A

exp (ω ·Q′(s, a′))

∣∣∣∣
=

∣∣∣∣ 1ω log

(
exp

(
ω ·max

a′∈A
∆(a′)

)) ∣∣∣∣
= |max

a∈A
∆(a)|

≤ max
a∈A

|Q(s, a)−Q′(s, a)|.

1For any x ∈ R, exp(x) = ex and all logarithms are base e.
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The remainder of this question focuses on Algorithm 1, which takes as input an operator⊗
: {S × A → R} → {S → R}

that adheres to the following property2:

||
⊗

Q−
⊗

Q′||∞ ≤ ||Q−Q′||∞, ∀Q,Q′ ∈ {S ×A → R}. (1)

Solution: Equation 1 is known as the non-expansion property and all operators
⊗

which obey this property
are known as non-expansion operators. Technically, the following convergence results also rely on

⊗
obeying

the following conservative property, which all the above operators also satisfy but we didn’t have you prove:

min
a∈A

Q(s, a) ≤
⊗

Q(s) ≤ max
a∈A

Q(s, a).

Algorithm 1: Solution: Generalized Value Iteration (GVI) [Littman and Szepesvári, 1996]

Data: Finite MDP M, Operator
⊗

satisfying Equation 1
Initialize V0(s) = 0,∀s ∈ S ▷ Initial value function estimate
Initialize k = 1 ▷ Iteration counter
while not converged do

for each state s ∈ S do

Vk(s) =
⊗
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s′ | s, a)Vk−1(s
′)

)
.

end
k = k + 1

end
Return Vk

5. For any value function V ∈ {S → R}, define the operator B : {S → R} → {S → R} as follows:

BV (s) =
⊗
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s′ | s, a)V (s′)

)
,

where
⊗

satisfies Equation 1. Prove that B is a γ-contraction with respect to the L∞-norm.

Solution: Take any two value functions V1, V2 ∈ {S → R}. Then,

||BV1 − BV2||∞ = max
s∈S

|BV1(s)− BV2(s)|

= max
s∈S

∣∣∣∣⊗
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s′ | s, a)V1(s
′)

)
−
⊗
a∈A

(
R(s, a) + γ

∑
s′∈S

T (s′ | s, a)V2(s
′)

)∣∣∣∣
≤ max

s,a∈S×A

∣∣∣∣R(s, a) + γ
∑
s′∈S

T (s′ | s, a)V1(s
′)−R(s, a) + γ

∑
s′∈S

T (s′ | s, a)V2(s
′)

∣∣∣∣
= max

s,a∈S×A

∣∣∣∣γ ∑
s′∈S

T (s′ | s, a) [V1(s
′)− V2(s

′)]

∣∣∣∣
≤ max

s,a∈S×A
γ

∣∣∣∣max
s′∈S

[V1(s
′)− V2(s

′)]

∣∣∣∣
≤ γmax

s∈S
|V1(s)− V2(s)| = γ||V1 − V2||∞.

2As always, || · ||∞ denotes the L∞-norm.
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Therefore, we have shown that the generalized Bellman operator is a γ-contraction with respect to the
L∞-norm.

6. Let
⊗
1
,
⊗
2

: {S × A → R} → {S → R} be two operators satisfying Equation 1. Prove that, for any

0 ≤ λ ≤ 1, ⊗
λ

= λ
⊗
1

+(1− λ)
⊗
2

also satisfies Equation 1.

Solution: Take any Q,Q′ ∈ {S ×A → R}. Then,

||
⊗
λ

Q−
⊗
λ

Q′||∞ = max
s∈S

∣∣∣∣⊗
λ

Q(s)−
⊗
λ

Q′(s)

∣∣∣∣
= max

s∈S

∣∣∣∣λ⊗
1

Q(s) + (1− λ)
⊗
2

Q(s)− λ
⊗
1

Q′(s)− (1− λ)
⊗
2

Q′(s)

∣∣∣∣
= max

s∈S

∣∣∣∣λ
(⊗

1

Q(s)−
⊗
1

Q′(s)

)
+ (1− λ)

(⊗
2

Q(s)−
⊗
2

Q′(s)

)∣∣∣∣
≤ max

s∈S

[
λ

∣∣∣∣⊗
1

Q(s)−
⊗
1

Q′(s)

∣∣∣∣+ (1− λ)

∣∣∣∣⊗
2

Q(s)−
⊗
2

Q′(s)

∣∣∣∣
]

≤ λmax
s∈S

∣∣∣∣⊗
1

Q(s)−
⊗
1

Q′(s)

∣∣∣∣+ (1− λ)max
s∈S

∣∣∣∣⊗
2

Q(s)−
⊗
2

Q′(s)

∣∣∣∣
= λ||

⊗
1

Q−
⊗
1

Q′||∞ + (1− λ)||
⊗
2

Q−
⊗
2

Q′||∞

≤ λ||Q−Q′||∞ + (1− λ)||Q−Q′||∞ = ||Q−Q′||∞.

7. For any 0 ≤ ε ≤ 1, define your own operator
⊗
ε

: {S × A → R} → {S → R} and prove that running

Algorithm 1 with your
⊗
ε

returns the value function associated with the ε-greedy optimal policy (where

the optimal policy maximizes the expected sum of future discounted rewards).

Solution: Define the non-expansion operators⊗
1

Q(s) =
1

|A|
∑
a∈A

Q(s, a)
⊗
2

Q(s) = max
a∈A

Q(s, a).

A policy acting uniformly at random achieves the average Q-value over all actions at each state. Thus,⊗
1

is the non-expansion operator associated with this uniform random policy whereas
⊗
2

corresponds

to the usual definition of optimal policy that maximizes the Q-value at each state. Therefore, the
ε-greedy optimal policy is formed by taking the convex combination:⊗

ε

Q = ε
⊗
1

Q+ (1− ε)
⊗
2

Q.

By parts (1) and (3) above, we know that
⊗
1
,
⊗
2

are both non-expansion operators. Thus, by the

previous part (6), we immediately have that
⊗
ε

is also a non-expansion operator implying that it is

compatible with GVI. By part (5), we have that any non-expansion operator is a γ-contraction on
value functions with respect to the L∞-norm. Therefore, by the Banach Fixed-Point Theorem, we are
guaranteed the existence of and the convergence of GVI to a unique fixed point.
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