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Spring 2023-2024

Problem 1

Suppose we have an infinite-horizon, discounted MDP M = (S, A, R, T,~) with a finite state-action space,
|Sx A|] < ooand 0 < v < 1. For any two arbitrary sets X and ), we denote the class of all functions mapping
from X to Y as {X¥ = Y} 2 {f | f: & = Y}. In the questions that follow, let Q, Q" € {S x A — R} be any
two arbitrary action-value functions and consider any fixed state s € S. Without loss of generality, you may
assume that Q(s,a) > Q'(s,a), V(s,a) € S x A.

Solution: The first three parts of this question are proven simultaneously and in more generality via Theorem
8 of Littman and Szepesvari [1996].

1. P that — ! N < - Q' .
rove that | max Q(s, a) — max Q'(s, a')| < max |Q(s,a) - Q'(s, a)|

Solution: ~ We can start by simply ignoring the absolute value signs on the left-hand side. Let
a* = argmax Q(s,a). Then,

acA
IaneaxQ(s a) — maxQ (s,a") = Q(s,a*) — maxQ (s,a”)
<Q(s,a) -
< max (Q(Sva) (8 a))
< max |Q(s, a) = Q'(s, a)l.

Now, take absolute values on both sides of the inequality (the left-hand side is already non-negative)
to get
|maX Q(s,a) — max Q'(s,a’)| < max|Q(s,a) — Q' (s,a)|.

a’eA acA

acA

2. P that i — mi ! Ny < — Q' .
vove that | min Q(s, a) — min Q'(s,a')| < max|Q(s,a) — Q'(s,a)

Solution: ~ We can start by simply ignoring the absolute value signs on the left-hand side. Let

a* = argmin Q'(s,a’). Then,
a’eA

mln Q(s,a) — meln Q' (s,a’) = 21.1612 Q(s,a) — Q'(s,a*)

< Q(Sa a*) - Q/(S’ a’*)
< max (Q(s, a) = Q'(s, a))
)—@Q

< - Q' )
< max|Q(s. @) - Q'(5.a)
Now, take absolute values on both sides of the inequality (the left-hand side is already non-negative)
to get
| min Q(s,a) — min Q’(s,a’)| < max|Q(s,a) — Q'(s,a)|.
a’eA acA

acA



3. Prove that ’i S Q(s,a) — 25 S Q'(s,d)| < max|Q(s,a) — Q'(s,a)l.
Ml aeu Al afea acA

Solution: We can start by simply ignoring the absolute value signs on the left-hand side.

1
|A|ZQsa ] 2 Qsa) = |A\Z Q'(s,a))

acA a’€eA acA

WZIQS@ )

acA
IA\ > may1Q(e.a) = @/(s.')
- W A max|Q(s,a) — Q'(s,0))
= max|Q(s, a) — Q'(s,a)].

Now, take absolute values on both sides of the inequality (the left-hand side is already non-negative)

to get ) )
‘M(;‘Q(s,a)— W ZQ (s,a")

a’cA

x|Q(s,a) = Q'(s, a)].

4. Prove that, for any parameter w € R,!

1 1 1 1 , / /
Log <A| 3 exp (o Q(s,a») ~ L log (W > e Qs >>> < Q) - Qs

acA a’'€A

Hint: define and introduce A(a) = Q(s,a) — Q’(s,a) for a € A.

Solution: This is the so-called mellowmax operator introduced by Asadi and Littman [2017] which,
unlike the Boltzmann softmax operator (see Lemma C.3 of Littman [1996]), obeys the stated property.

Let A(a) = Q(Sa a) - Q’(s,a)
> exp(w- Q(s,a))

1 1 1 1 e oy ) |- L aEA
’w log <|.A| Z exp (w - Q(s,a))) — 510g <|A| Z exp (w-Q'(s,a ))) ' = ’w log S exp (w - Q'(s,a'))

acA a’c A =

> exp(w- (Q'(s,a) + Ala)))

‘ 1 a€A ’
GE:A exp (w- Q' (s, a’))
> exp(w-Q'(s,a’)) ‘

a’'€A
> exp(w-Q'(s,a))
— 1 / acA
=|—log | exp <w -max A(a )> ‘
w

INA
\
<)
0e

a’eA > exp(w-Q'(s,a’))
a’'€eA
_ 1 log (exp (w - max A(a’)))
_ |m€a;A< 2)
< max |Q(s, a) = Q'(s, a)l.

LFor any = € R, exp(z) = e® and all logarithms are base e.



The remainder of this question focuses on Algorithm 1, which takes as input an operator
Q) : {Sx A= R} = {S >R}
that adheres to the following property?:
1QQ-Q QN <@ -Qlle;,  ¥Q,Q €{Sx A=R}. (1)

Solution: Equation 1 is known as the non-expansion property and all operators () which obey this property
are known as non-expansion operators. Technically, the following convergence results also rely on ) obeying
the following conservative property, which all the above operators also satisfy but we didn’t have you prove:

min (s, a) < QR Qs) < max (s, a)-

Algorithm 1: Solution: Generalized Value Iteration (GVI) [Littman and Szepesvari, 1996]
Data: Finite MDP M, Operator ) satisfying Equation 1
Initialize V5(s) = 0,Vs € S > Initial value function estimate
Initialize £k =1 > Iteration counter
while not converged do
for each state s € S do

Vi(s)= & (R(s,a)+’y S T(s | s,a)Vkl(s’)>.

acA s'eS

end
k=k+1
end
Return V;,

5. For any value function V' € {§ — R}, define the operator B : {S — R} — {S — R} as follows:
BV(s) = @ (R(Sva) +y ) T &a)V(S’)) ;
acA s'eS

where Q) satisfies Equation 1. Prove that B is a y-contraction with respect to the L.,-norm.

Solution: Take any two value functions Vi, V5 € {S — R}. Then,
[1BV1 — BVs||oo = max [BVi(s) — BVa(s)]

X <R<s7a> +y > T | s,am(s')) - (R(M) +y > T | s,a>v2<s'>> \

= max
seS
acA s'eS acA s’eS
< ap no_ / ’
< Dax R(s,a) +~ Z T(s" | s,a)Vi(s") — R(s,a) +~ Z T(s" | s,a)Va(s")
s'€S s'€S

_ / N ’

= B T @ ) ) |

< max vy
s,aESXA

< 7 max [Vi(s) = Va(s)| = v|[Vi = Va|s-

e () = Va(s)]

s'eS

2As always, || - ||co denotes the Loo-norm.



Therefore, we have shown that the generalized Bellman operator is a y-contraction with respect to the
Loo-norm.

6. Let @,Q : {S x A = R} = {S — R} be two operators satisfying Equation 1. Prove that, for any
1 2

0<A<1,
QR =2Q+1-MHQ

A 1 2
also satisfies Equation 1.

Solution: Take any Q,Q’ € {S x A — R}. Then,
1K@~ @ QI = max| Q) Qs) — Q) Q'(s)
A A A A
= max PR + (1N @) AR ~1- VR

a— (@ Q(s) - @Q%s)) F(1-2) (@ Q(s) - @Q%s)) |
< max M@Q(s)_ +( —A)‘@Q(S) —@Q’(S)]
< Amax @Qe) - @Q%s) + (1 - @Q(s) - @Q’(s)
= A||§)Q—(§1§)Q’Hoo+ (1 4)\@@—@@’“0@

SAQ = Qe + (1 =N[Q = Qlloe = 1Q = Q|-

A) max
seS

7. For any 0 < ¢ < 1, define your own operator ) : {S x A — R} — {S — R} and prove that running
€
Algorithm 1 with your ) returns the value function associated with the e-greedy optimal policy (where

g
the optimal policy maximizes the expected sum of future discounted rewards).

Solution: Define the non-expansion operators

Q) Q(s) |A|Zczsa) ®Q = max (s, a).
1

acA

A policy acting uniformly at random achieves the average Q-value over all actions at each state. Thus,
® is the non-expansion operator associated with this uniform random policy whereas ® corresponds

to the usual definition of optimal policy that maximizes the Q-value at each state. Therefore the
e-greedy optimal policy is formed by taking the convex combination:

Re=:QRe+01-9)R Q.

By parts (1) and (3) above, we know that ), Q) are both non-expansion operators. Thus, by the
1 2
previous part (6), we immediately have that Q) is also a non-expansion operator implying that it is

€
compatible with GVI. By part (5), we have that any non-expansion operator is a ~y-contraction on
value functions with respect to the L.,-norm. Therefore, by the Banach Fixed-Point Theorem, we are
guaranteed the existence of and the convergence of GVI to a unique fixed point.
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