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Problem 1

For this problem, we will work with a reward function operating on transitions, R : S x A x § — R. We
are given an infinite-horizon, discounted MDP M = (S, A, R, T,~) but we will actually solve a MDP M’
with an augmented reward function M’ = (S, A, R',T,v) where R'(s,a,s’) = R(s,a,s') + F(s,a,s’). To
provide some motivation, think of a scenario where R produces values of 0 for most transitions; a bonus
reward function F : § x A x § — R that produces non-zero values could provide us more immediate feed-
back and help accelerate the learning speed of our agent. In this problem, we will focus on a particular type
of reward bonus F(s,a, s') = v¢(s") — ¢(s), for some arbitrary function ¢ : S — R and V(s,a,s’) € Sx AX S.

1. Let Q%,, Q% denote the optimal action-value functions of MDPs M and M’, respectively. Using the
Bellman equation, prove that Q%,(s,a) — ¢(s) = Q3 (s,a) and then use this fact to conclude that
T (s) = mh(s),Vs € S.

Solution:
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Note that in the second-to-last line, we recognize that the equation we have corresponds to some
action-value function of MDP M’. In the final line, we acknowledge that this is the Bellman optimality



equation, which only holds for the optimal action-value function of M’, Q% .
T (8) = argmax Q¢ (s, a)
acA

= argmax Q(s,a) — ¢(s)
acA

= arg max Q3 (s, a)
acA

=T (s)

The general technique shown here for modifying the reward function is known as reward shaping.
When F : § x A xS — R is defined as described in this problem, this is known as potential-based
reward shaping [Ng et al., 1999].

. Consider running @Q-learning in each MDP M and M’ which requires, for each MDP, initial values
Q%(s,a) and Q% (s, a). Let ginix € R be a real value such that
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At any moment in time, the current Q)-value of any state-action pair is always equal to its initial value
plus some A value denoting the total change in the Q-value across all updates:
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Show that if AQm(s,a) = AQam:(s,a) for all (s,a) € S x A, then show that these two @Q-learning
agents yield identical updates for any state-action pair.

Solution: We can expand the @Q-learning update rule for the agent that does not use reward shaping
as
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where the final equation is the Q-learning update for MDP M’. This result shows that potential-based

reward shaping as described in the previous part is equivalent to a particular QQ-value initialization
based on the potential function ¢ [Wiewiora, 2003].
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