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Problem 1

Consider an infinite-horizon, discounted MDP M = (S, A,R,T,~) where v € [0,1) and the state-action
space is finite (|S x A| < c0). For any stochastic policy 7 : § — A(A), recall that the discounted stationary-
state distribution is defined such that, for any state s € S,

d™ ( Z Y'P7(s¢ = s)

where P7(s; = s) denotes the probability that the (random) state s; encountered by policy m at timestep ¢
is equal to s. Let 8 € A(S) be an initial state distribution such that P™(so = s) = §(s) for all policies 7 and
any state s € S.

1. Prove that for any state s’ € S,

d™(s') = (1=7)B(s) +v>_ > T(s'| s,a)w(a | s)d™(s).
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Solution: This result is a fact of stationary state distributions mentioned in, for example, [Liu et al.,
2018] as part of handling long horizons in off-policy policy evaluation.
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2. Show that for any two policies 7, 7/, we have

|d™ —d™ || < Esndr [Drv (n(- [ 8) [| 7'(- | 5))]

T
(1=7)
where Dy (w(- | s) || /(- | s)) = 2 3 |n(a | s) — 7/(a | s)| is the total variation distance between

acA
policies m and 7’ at state s.

Hint: Use a “zero” term involving d”.

Solution: This result is given as Lemma 3 of Achiam et al. [2017]. Applying the definitions for the
visitation distributions of 7 and 7/, we have
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3. Denote the stationary state-action visitation distribution x™ € A(S x A) of a policy as x™(s,a) =
d™(s)m(a | s). Show that for any two policies m, 7, we have

I =Xl < (%wﬂam« Dy (x(- | 5) | 7 | 5))].



Solution: Applying the definition of the stationary state-action distribution, we have
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4. Define Ryjax = max  |R(s,a)| and show that
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Hint: Remember that By 5 [V™(s0)] = RTX™, where R € RISIAl is the vector of all MDP rewards,
and recall Holder’s inequality.

Solution: This result appears as a corollary of Lemma 2 in [Abel et al., 2019], where Pinsker’s inequality
is used to express the result in terms of the expected KL-divergence between the two policies instead
of the total variation distance.

Leveraging the hint and the previous part, we see that

]ESONB |:V7T(SO) o Vﬂ—'(s(]):| _ RTXTr o RTXW/

=RT (¥ - x")
<[RT (X”—x”)l
< Rl [IX™ = X" Il1
——
=Rmax

2Rnax

< - Esar [Drv (x(- | s) || 7'(- | 5))].




References

David Abel, Dilip Arumugam, Kavosh Asadi, Yuu Jinnai, Michael L Littman, and Lawson LS Wong. State
abstraction as compression in apprenticeship learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3134-3142, 2019.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained Policy Optimization. In Inter-
national Conference on Machine Learning, pages 22-31. PMLR, 2017.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of horizon: Infinite-horizon
off-policy estimation. Advances in Neural Information Processing Systems, 31, 2018.



