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Midterm

Which of the following are valid equations for V π(st) for a state st in an
MDP M = 〈S,A,P,R, γ〉? Note that st is the state at time t and the
action at this timestep would be at and the next state would be st+1 and
so on. The policy π is stochastic and τ represents a trajectory.

1
∑∞

i=t γ
i−tr(si , ai ) where the actions ai are sampled from the policy

2 Eτ∼π[
∑∞

i=t γ
i−tr(si , ai )]

3 r(st , at) + γEst+1∼P [V π(st+1)]

4 r(st , at) + γV π(st+1)

5 maxa[Qπ(st , a)]

6 Ea∼π[Qπ(st , a)]
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Midterm

Which of the following are true about REINFORCE? In the following
options, PG stands for policy gradient.

(a) Adding a baseline term can help to reduce the variance of the PG
updates

(b) It will converge to a global optima

(c) It can be initialized with a sub-optimal, deterministic policy and still
converge to a local optima, given the appropriate step sizes

(d) If we take one step of PG, it is possible that the resulting policy gets
worse (in terms of achieved returns) than our initial policy
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Midterm

Consider an MDP M. M has three states A,B,C and a terminal state
and two actions a1, a2.
You observe the following episode from M. The labels above the arrows
are actions and below are the rewards.

A
a1−−→
+5

B
a1−−→
−2

A
a2−−→
+3

C
a1−−→
−2

B
a2−−→
+4

C
a2−−→
−2

terminal

At each time point, the greedy deterministic behaviour policy depends only
on the current state. Could this trajectory be generated by Monte Carlo
control reinforcement learning? Could this trajectory have been generated
by SARSA? Justify your explanations.
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Homework 2

Given a stream of batches of n environment interactions (si , ai , ri , s
′
i ), we

want to learn the optimal value function using a neural network. The
underlying MDP has a finite-sized action space. Your friend first suggests
the following approach:

Initialize parameters φ of a neural network Vφ
For each batch of k tuples (si , ai , ri , s

′
i ) (sampled at random), do

stochastic gradient descent with the loss function
∑k

i=0 |yi −Vφ(si )|2,
where yi = maxai [ri + γVφ(s ′i )], where the maxai is taken over all the
tuples in the batch of the form (si , ai , ∗, ∗).

What is the problem with this approach?
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PPO Subtleties

In class we covered some core ideas underlying modern policy
gradient approaches

There are multiple other common algorithmic changes that people
often employ, including

Entropy regularization which can be decayed
Normalizing the advantages
Using Generalized Advantage Estimation
Tuning the batch size and the number of steps per batch
Ensuring the action range output is automatically within the desired
range

Multiple papers discuss this issue including:
”Implementation matters in deep RL: A case study on PPO and TRPO”
https://openreview.net/forum?id=r1etN1rtPB .
”Revisiting Design Choices in Proximal Policy Optimization”
https://arxiv.org/abs/2009.10897,
for actor critic algorithms ”What Matters for On-Policy Deep Actor-Critic
Methods? A Large-Scale Study”
https://openreview.net/forum?id=nIAxjsniDzg
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Refresh Your Understanding

Select all that are true:
1 In Thompson sampling for MDPs, the posterior over the dynamics can

be updated after each transition
2 When using a Beta prior for a Bernoulli reward parameter for an (s,a)

pair, the posterior after N samples of that pair time steps can be the
same as after N+2 samples

3 The optimism bonuses discussed for MBIE-EB depend on the
maximum reward but not on the maximum value function

4 In class we discussed adding a bonus term to an update for a (s,a,r,s’)
tuple using Q-learning with function approximation. Adding this bonus
term will ensure all Q estimates used to make decisions online using
DQN are optimistic with respect to Q*

5 Not sure
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Class Structure

Last time: Fast Learning

This time: Imitation Learning

Next time: Batch offline RL
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Learning from Past Decisions and Outcomes

In some settings there exist very good decision policies and we would like
to automate them

One idea: humans provide reward signal when RL algorithm makes
decisions

Good: simple, cheap form of supervision

Bad: High sample complexity

Alternative: imitation learning

Emma Brunskill (CS234 Reinforcement Learning. )Imitation Learning in Large State Spaces1 Winter 2023 12 / 49



Reward Shaping

Rewards that are dense in time closely guide the agent. How can we
supply these rewards?

Manually design them: often brittle

Implicitly specify them through demonstrations

Learning from Demonstration for Autonomous Navigation in Complex Unstructured
Terrain, Silver et al. 2010
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Examples

Simulated highway driving [ Abbeel and Ng, ICML 2004; Syed and
Schapire, NIPS 2007; Majumdar et al., RSS 2017 ]

Parking lot navigation [Abbeel, Dolgov, Ng, and Thrun, IROS 2008]
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Learning from Demonstrations

Expert provides a set of demonstration trajectories: sequences of
states and actions

Imitation learning is useful when it is easier for the expert to
demonstrate the desired behavior rather than:

Specifying a reward that would generate such behavior,
Specifying the desired policy directly

Emma Brunskill (CS234 Reinforcement Learning. )Imitation Learning in Large State Spaces1 Winter 2023 15 / 49



Problem Setup

Input:

State space, action space
Transition model P(s ′ | s, a)
No reward function R
Set of one or more teacher’s demonstrations (s0, a0, s1, s0, . . .)
(actions drawn from teacher’s policy π∗)

Behavioral Cloning:

Can we directly learn the teacher’s policy using supervised learning?

Inverse RL:

Can we recover R?

Apprenticeship learning via Inverse RL:

Can we use R to generate a good policy?
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Behavioral Cloning

Formulate problem as a standard machine learning problem:

Fix a policy class (e.g. neural network, decision tree, etc.)
Estimate a policy from training examples (s0, a0), (s1, a1), (s2, a2), . . .

Two notable success stories:

Pomerleau, NIPS 1989: ALVINN
Summut et al., ICML 1992: Learning to fly in flight simulator
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ALVINN
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Behavioral cloning

Often behavior cloning in practice can work very well, especially if use
BCRNN

See What Matters in Learning from Offline Human Demonstrations
for Robot Manipulation. Mandlekar et al. CORL 2021
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Potential Problem with Behavior Cloning: Compounding
Errors

Supervised learning assumes iid. (s, a) pairs and ignores temporal structure
Independent in time errors:

Error at time t with probability <= ε
E[Total errors] <= εT
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Problem: Compounding Errors

Data distribution mismatch!
In supervised learning, (x , y) ∼ D during train and test. In MDPs:

Train: st ∼ Dπ∗

Test: st ∼ Dπθ

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online
Learning, Ross et al. 2011
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Problem: Compounding Errors

Error at time t with probability ε

Approximate intuition: E[Total errors]
≤ ε(T + (T − 1) + (T − 2) . . .+ 1) ∝ εT 2

Real result requires more formality. See Theorem 2.1 in
http://www.cs.cmu.edu/~sross1/publications/

Ross-AIStats10-paper.pdf with proof in supplement:
http://www.cs.cmu.edu/~sross1/publications/

Ross-AIStats10-sup.pdf

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online
Learning, Ross et al. 2011
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DAGGER: Dataset Aggregation

Idea: Get more labels of the expert action along the path taken by
the policy computed by behavior cloning

Obtains a stationary deterministic policy with good performance
under its induced state distribution

Key limitation?
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Feature Based Reward Function

Given state space, action space, transition model P(s ′ | s, a)

No reward function R

Set of one or more expert’s demonstrations (s0, a0, s1, s0, . . .)
(actions drawn from teacher’s policy π∗)

Goal: infer the reward function R

Assume that the teacher’s policy is optimal. What can be inferred
about R?
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Check Your Understanding: Feature Based Reward
Function

Given state space, action space, transition model P(s ′ | s, a)

No reward function R

Set of one or more teacher’s demonstrations (s0, a0, s1, s0, . . .)
(actions drawn from teacher’s policy π∗)

Goal: infer the reward function R

Assume that the teacher’s policy is optimal.

1 There is a single unique R that makes teacher’s policy optimal

2 There are many possible R that makes teacher’s policy optimal

3 It depends on the MDP

4 Not sure
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Check Your Understanding: Feature Based Reward
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Given state space, action space, transition model P(s ′ | s, a)
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Linear Feature Reward Inverse RL

Recall linear value function approximation

Similarly, here consider when reward is linear over features

R(s) = wT x(s) where w ∈ Rn, x : S → Rn

Goal: identify the weight vector w given a set of demonstrations

The resulting value function for a policy π can be expressed as

V π(s0) = Es∼π[
∞∑
t=0

γtR(st)|s0]
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Linear Feature Reward Inverse RL

Recall linear value function approximation

Similarly, here consider when reward is linear over features

R(s) = wT x(s) where w ∈ Rn, x : S → Rn

Goal: identify the weight vector w given a set of demonstrations

The resulting value function for a policy π can be expressed as

V π(s0) = Es∼π[
∞∑
t=0

γtR(st) | s0] = Es∼π[
∑∞

t=0 γ
twT x(st) | s0]

= wTEs∼π[
∑∞

t=0 γ
tx(st) | s0]

= wTµ(π)

where µ(π)(s) is defined as the discounted weighted frequency of
state features under policy π, starting in state s0.
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Relating Frequencies to Optimality

Assume R(s) = wT x(s) where w ∈ Rn, x : S → Rn

Goal: identify the weight vector w given a set of demonstrations

V π = Es∼π[
∑∞

t=0 γ
tR∗(st) | π] = wTµ(π) where

µ(π)(s) = discounted weighted frequency of state s under policy π.

V ∗ ≥ V π

Emma Brunskill (CS234 Reinforcement Learning. )Imitation Learning in Large State Spaces1 Winter 2023 33 / 49



Relating Frequencies to Optimality

Recall linear value function approximation

Similarly, here consider when reward is linear over features
R(s) = wT x(s) where w ∈ Rn, x : S → Rn

Goal: identify the weight vector w given a set of demonstrations

The resulting value function for a policy π can be expressed as

V π = wTµ(π)

µ(π)(s) = discounted weighted frequency of state s under policy π.

Es∼π∗ [
∞∑
t=0

γtR∗(st) | π∗] = V ∗ ≥ V π = Es∼π[
∞∑
t=0

γtR∗(st) | π] ∀π

Therefore if the expert’s demonstrations are from the optimal policy,
to identify w it is sufficient to find w∗ such that

w∗Tµ(π∗) ≥ w∗Tµ(π),∀π 6= π∗
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Feature Matching

Want to find a reward function such that the expert policy
outperforms other policies.

For a policy π to be guaranteed to perform as well as the expert
policy π∗, sufficient if its discounted summed feature expectations
match the expert’s policy [Abbeel & Ng, 2004].

More precisely, if
‖µ(π)− µ(π∗)‖1 ≤ ε

then for all w with ‖w‖∞ ≤ 1:

|wTµ(π)− wTµ(π∗)| ≤ ε
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Ambiguity

There is an infinite number of reward functions with the same optimal
policy.

There are infinitely many stochastic policies that can match feature
counts

Which one should be chosen?
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Learning from Demonstration / Imitation Learning Pointers

Many different approaches

Two of the key papers are:

Maximumum Entropy Inverse Reinforcement Learning (Ziebart et al.
AAAI 2008)
Generative adversarial imitation learning (Ho and Ermon, NeurIPS
2016)
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Max Entropy Inverse RL

Again assume a linear reward function R(s) = wT x(s)

Define the total feature counts for a single trajectory τj as:
µτj =

∑
si∈τj x(si )

Note that this is a slightly different definition that we saw earlier

The average feature counts over m trajectories is: µ̃ = 1
m

∑m
j=1 µτj
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Deterministic MDP Path Distributions

Consider all possible H-step trajectories in a deterministic MDP

For a linear reward model, a policy is completely specified by its
distribution over trajectories

Which policy/distribution should we choose given a set of m
demonstrations?
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Principle of Max Entropy

Principle of max entropy: choose distribution with no additional
preferences beyond matching the feature expectations in the
demonstration dataset

max
P
−
∑
τ

P(τ) logP(τ)s.t.
∑
τ

P(τ)µτ = µ̃
∑
τ

P(τ) = 1

(1)

In the linear reward case, this is equivalent to specifying the weights
w that yield a policy with the max entropy constrained to matching
the feature expectations

Ziebart et al., 2008
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Max Entropy Principle

Maximizing the entropy of the distribution over the paths subject to
the feature constraints from observed data implies we maximize the
likelihood of the observed data under the maximum entropy
(exponential family) distribution1.

P(τj | w) =
1

Z (w)
exp

(
wTµτj

)
=

1

Z (w)
exp

∑
si∈τj

wT x(si )


Z (w , s) =

∑
τs

exp
(
wTµτs

)
Strong preference for low cost paths, equal cost paths are equally
probable.

1Jaynes 1957
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Stochastic MDPs

Many MDPs of interest are stochastic

For these the distribution over paths depends both on the reward
weights and on the stochastic dynamics

P(τj | w ,P(s ′|s, a)) ≈
exp

(
wTµτj

)
Z (w ,P(s ′|s, a))

∏
si ,ai∈τj

P(si+1|si , ai )
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Learning w

Select w to maximize likelihood of data:

w∗ = arg max
w

L(w) = arg max
w

∑
examples

logP(τ | w)

The gradient is the difference between expected empirical feature
counts and the learner’s expected feature counts, which can be
expressed in terms of expected state visitation frequencies

∇L(w) = µ̃−
∑
τ

P(τ | w)µτ = µ̃−
∑
si

D(si )x(si )

where D(si ): state visitation frequency

Do we need to know the transition model to compute the above?
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MaxEnt IRL Algorithm
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Max Entropy IRL

Max entropy approach has been hugely influential

Provides a principled way for selecting among the (many) possible
reward functions

The original formulation requires knowledge of the transition model or
the ability to simulate/act in the world to gather samples of the
transition model

Check your understanding: was this needed in behavioral cloning?
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From IRL to Policies

Inverse RL approaches provide a way to learn a reward function

Generally interested in using this reward function to compute a policy
whose performance equals or exceeds the expert policy

One approach: given learned reward function, use with regular RL

Can we more directly learn the desired policy?
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Summary

Imitation learning can greatly reduce the amount of data need to
learn a good policy

Challenges remain and one exciting area is combining inverse RL /
learning from demonstration and online reinforcement learning

For a look into some of the theory between imitation learning and RL,
see Sun, Venkatraman, Gordon, Boots, Bagnell (ICML 2017)
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Imitation learning: What You Should Know

Define behavior cloning and how it differs from reinforcement learning
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Know some limitations and challenges to IRL



Class Structure

Last time: Learning from offline data, overview and policy evaluation

This time: Learning from offline data, policy evaluation and imitation
learning

Next time: Learning from offline data, policy optimization / learning
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