Lecture 3: Model-Free Policy Evaluation: Policy Evaluation Without Knowing How the World Works¹

Emma Brunskill

CS234 Reinforcement Learning

¹Material builds on structure from David SIlver's Lecture 4: Model-Free Prediction. Other resources: Sutton and Barto Jan 1 2018 draft Chapter/Sections: 5.1; 5.5; 6 1-6.3 o

Winter 2022

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

L3N1 Refresh Your Knowledge [Polleverywhere Poll]

- What is the max number of iterations of policy iteration in a tabular MDP?
 IAIISI
 IAIISI
- In a tabular MDP asymptotically value iteration will always yield a policy with the same value as the policy returned by policy iteration
 - True.
 - 2 False
 - Ont sure
- Can value iteration require more iterations than |A||^{S|} to compute the optimal value function? (Assume |A| and |S| are small enough that each rough of value iteration can be done exactly).
 False
 Not sure

L3N1 Refresh Your Knowledge

- What is the max number of iterations of policy iteration in a tabular MDP? Answer: $|A|^{|S|}$: There are only $|A|^{|S|}$ policies in a tabular MDP and each policy can only be considered at most once, since policy improvement either results in a policy with a higher value or returns the same policy if the optimal policy has been found.
- In a tabular MDP asymptotically value iteration will always yield a policy with the same value as the policy returned by policy iteration Answer. True. Both are guaranteed to converge to the optimal value function and a policy with an optimal value
- Can value iteration require more iterations than $|A|^{|S|}$ to compute the optimal value function? (Assume |A| and |S| are small enough that each round of value iteration can be done exactly).

Answer: True. As an example, consider a single state, single action MDP where r(s, a) = 1, $\gamma = .9$ and initialize $V_0(s) = 0$. $V^*(s) = \frac{1}{1-\gamma}$ but after the first iteration of value iteration, $V_1(s) = 1$.

- Last Time:
 - Markov reward / decision processes
 - Policy evaluation & control when have true model (of how the world works)
- Today
 - Policy evaluation without known dynamics & reward models
- Next Time:
 - Control when don't have a model of how the world works

- Estimate expected return of policy π
- Only using data from environment¹ (direct experience)
- Why is this important?
- What properties do we want from policy evaluation algorithms?

¹Assume today this experience comes from executing the policy π . Later will consider how to do policy evaluation using data gathered from other policies.

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

Recall

• Definition of Return, G_t (for a MRP)

• Discounted sum of rewards from time step t to horizon

$$G_{t} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \gamma^{3} r_{t+3} + \cdots$$

We Function, $V^{\pi}(s)$

- Definition of State Value Function, $V^{\pi}(s)$
 - Expected return starting in state s under policy π

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] = \mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots |s_t = s]$$

- Definition of State-Action Value Function, $Q^{\pi}(s, a)$
 - Expected return starting in state s, taking action a and following policy π

$$Q^{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|s_t = s, a_t = a]$$

= $\mathbb{E}_{\pi}[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots | s_t = s, a_t = a]$

Recall: Dynamic Programming for Policy Evaluation

• In a Markov decision process

$$\underbrace{V^{\pi}(s)}_{=} = \underbrace{\mathbb{E}_{\pi}[G_{t}|s_{t}=s]}_{\mathbb{E}_{\pi}[r_{t}+\gamma r_{t+1}}+\gamma^{2}r_{t+2}+\gamma^{3}r_{t+3}+\cdots|s_{t}=s]}_{R(s,\pi(s))+\gamma} \underbrace{\mathbb{E}_{\pi}[r_{t}+\gamma r_{t+1}}_{s'\in S} P(s'|s,\pi(s))V^{\pi}(s')}_{S'(s,\pi(s))} e^{it}$$

• If given dynamics and reward models, can do policy evaluation through dynamic programming

$$V_{k}^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$
(1)

• Note: before convergence, V_k is an estimate of V^{π}

• In Equation 1 we are substituting $\sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$ for $\mathbb{E}_{\pi}[r_{t+1} + \gamma^{*}r_{t+2} + \gamma^{*}r_{t+3}^{*} + \cdots |s_{t} = s]$.

• This substitution is an instance of **bootstrapping**

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots + \gamma^{T_i 1} r_{T_i}$ in MDP *M* under policy π
- $V^{\pi}(s) = \mathbb{E}_{\tau \sim \pi}[G_t | s_t = s]$
 - Expectation over trajectories τ generated by following π
- Simple idea: Value = mean return
- If trajectories are all finite, sample set of trajectories & average returns
- Note: all trajectories may not be same length (e.g. consider MDP with terminal states)

- If trajectories are all finite, sample set of trajectories & average returns
- Does not require MDP dynamics/rewards
- Does not assume state is Markov
- Can be applied to episodic MDPs
 - Averaging over returns from a complete episode
 - Requires each episode to terminate

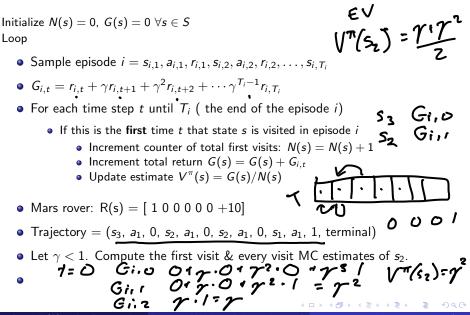
Initialize N(s) = 0, G(s) = 0 $\forall s \in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i 1} r_{i,T_i}$ as return from time step <u>t</u> onwards in ith episode
- For each time step t until T_i (the end of the episode i)
 - If this is the **first** time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Initialize N(s) = 0, G(s) = 0 $\forall s \in S$ Loop

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i 1} r_{i,T_i}$ as return from time step *t* onwards in *i*th episode
- For each time step t until T_i (the end of the episode i)
 - state s is the state visited at time step t in episodes i
 - Increment counter of total visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Worked Example MC On Policy Evaluation



Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

Worked Example MC On Policy Evaluation

Initialize N(s) = 0, $G(s) = 0 \ \forall s \in S$ Loop

• Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$

•
$$G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i - 1} r_{i,T_i}$$

- For each time step t until T_i (the end of the episode i)
 - If this is the **first** time t that state s is visited in episode i
 - Increment counter of total first visits: N(s) = N(s) + 1
 - Increment total return $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$
- Mars rover: R = [1 0 0 0 0 0 + 10] for any action
- Trajectory = (s_3 , a_1 , 0, s_2 , a_1 , 0, s_2 , a_1 , 0, s_1 , a_1 , 1, terminal)
- L $\gamma < 1$. Compare the first visit & every visit MC estimates of s_2 . First visit: $V^{MC}(s_2) = \gamma^2$, Every visit: $V^{MC}(s_2) = \frac{\gamma^2 + \gamma}{2}$

After each episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots$

- Define $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots$ as return from time step t onwards in *i*th episode
- For state *s* visited at time step *t* in episode *i*
 - Increment counter of total visits: N(s) = N(s) + 1
 - Update estimate

$$V^{\pi}(s) = V^{\pi}(s)\frac{N(s)-1}{N(s)} + \frac{G_{i,t}}{N(s)} = V^{\pi}(s) + \frac{1}{N(s)}(G_{i,t} - V^{\pi}(s))$$

Incremental Monte Carlo (MC) On Policy Evaluation

- Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i 1} r_{i,T_i}$
- for i = 1: T_i where T_i is the length of the *i*-th episode

Typo: for loop is over t=1:T_i (correct on next slides)

•
$$V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha(G_{i,t} - V^{\pi}(s_{it}))$$

 We will see many algorithms of this form with a learning rate, target, and incremental update

Check Your Understanding L3N1: Polleverywhere Poll Incremental MC (State if each is True or False)

First or Every Visit MC

• Sample episode *i* = *s*_{*i*,1}, *a*_{*i*,1}, *r*_{*i*,1}, *s*_{*i*,2}, *a*_{*i*,2}, *r*_{*i*,2}, ..., *s*_{*i*,*T*_{*i*}}}

•
$$G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i - 1} r_{i,T_i}$$

- For all s, for first or every time t that state s is visited in episode i
 - N(s) = N(s) + 1, $G(s) = G(s) + G_{i,t}$
 - Update estimate $V^{\pi}(s) = G(s)/N(s)$

Incremental MC

• Sample episode
$$i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$$

•
$$G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i - 1} r_{i,T}$$

• for t = 1: T_i where T_i is the length of the *i*-th episode

•
$$V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha(G_{i,t} - V^{\pi}(s_{it}))$$

Incremental MC with $\alpha=1$ is the same as first visit MC

2 Incremental MC with $lpha=rac{1}{\mathit{N}(s_{it})}$ is the same as every visit MC $\,$ $\,$.

3 Incremental MC with $\alpha > \frac{1}{N(s_{it})}$ could be helpful in non-stationary domains

1 T (SH)= Gi,t

Check Your Understanding L3N1: Polleverywhere Poll Incremental MC Answers

First or Every Visit MC

۰ Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$

•
$$G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots \gamma^{T_i - 1} r_{i,T_i}$$

• For all s, for first or every time t that state s is visited in episode i

• Update estimate $V^{\pi}(s) = G(s)/N(s)$

Incremental MC

• Sample episode $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$

• for t = 1: T_i where T_i is the length of the *i*-th episode • $V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha(G_{i,t} - V^{\pi}(s_{it}))$

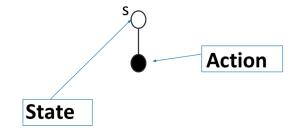
Incremental MC with
$$\alpha=1$$
 is the same as first visit MC

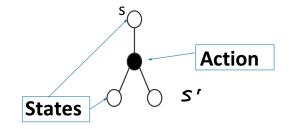
1 false

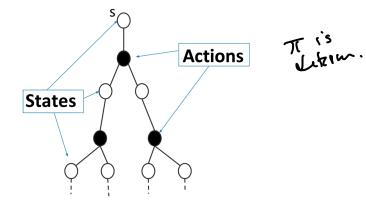
Incremental MC with
$$\alpha = \frac{1}{N(s_{it})}$$
 is the same as every visit MC true

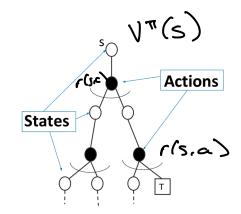
3 Incremental MC with
$$\alpha > \frac{1}{N(s_{it})}$$
 could help in non-stationary domains
true

A (10) < A (10) < A (10) </p>





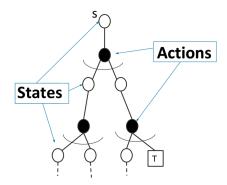




= Expectation **T** = Terminal state

MC Policy Evaluation

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$



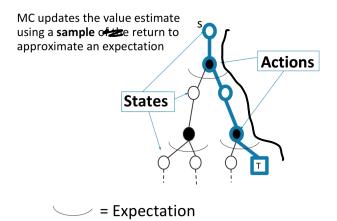
= Expectation
 = Terminal state

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

Winter 2022 24 / 67

MC Policy Evaluation

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$



Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

- Consistency: with enough data, does the estimate converge to the true value of the policy?
- Computational complexity: as get more data, computational cost of updating estimate
- Memory requirements
- Statistical efficiency (intuitively, how does the accuracy of the estimate change with the amount of data)
- Empirical accuracy, often evaluated by mean squared error

Evaluation of the Quality of a Policy Estimation Approach: Bias, Variance and MSE

- Consider a statistical model that is parameterized by θ and that determines a probability distribution over observed data $P(x|\theta)$
- Consider a statistic $\hat{\theta}$ that provides an estimate of θ and is a function of observed data x
 - E.g. for a Gaussian distribution with known variance, the average of a set of i.i.d data points is an estimate of the mean of the Gaussian
- Definition: the bias of an estimator $\hat{\theta}$ is: $Bias_{\theta}(\hat{\theta}) = \mathbb{E}_{\mathbf{x}|\theta}[\hat{\theta}] - \theta$
- Definition: the variance of an estimator $\hat{\theta}$ is:

$$\mathsf{Var}(\hat{ heta}) = \mathbb{E}_{x| heta}[(\hat{ heta} - \mathbb{E}[\hat{ heta}])^2]$$

• Definition: mean squared error (MSE) of an estimator $\hat{\theta}$ is:

$$\textit{MSE}(\hat{ heta}) = \textit{Var}(\hat{ heta}) + \textit{Bias}_{ heta}(\hat{ heta})^2$$

Evaluation of the Quality of a Policy Estimation Approach: Consistent Estimator

- Consider a statistical model that is parameterized by θ and that determines a probability distribution over observed data $P(x|\theta)$
- Consider a statistic $\hat{\theta}$ that provides an estimate of θ and is a function of observed data x
- Definition: the bias of an estimator $\hat{\theta}$ is:

$$\mathsf{Bias}_{ heta}(\hat{ heta}) = \mathbb{E}_{\mathsf{x}| heta}[\hat{ heta}] - heta$$

- Let n be the number of data points x used to estimate the parameter θ and call the resulting estimate of θ using that data θ̂_n
- Then the estimator $\hat{\theta}_n$ is consistent if, for all $\epsilon > 0$

$$\lim_{n\to\infty} \Pr(|\hat{\theta}_n - \theta| > \epsilon) = 0$$

• If an estimator is unbiased (bias = 0) is it consistent?

Properties:

- First-visit Monte Carlo
 - V^{π} estimator is an unbiased estimator of true $\mathbb{E}_{\pi}[G_t|s_t = s]$
 - By law of large numbers, as $N(s) o \infty$, $V^{\pi}(s) o \mathbb{E}_{\pi}[G_t | s_t = s]$
- Every-visit Monte Carlo
 - V^{π} every-visit MC estimator is a **biased** estimator of V^{π}
 - But consistent estimator and often has better MSE
- Incremental Monte Carlo
 - $\bullet\,$ Properties depends on the learning rate α

Properties of Monte Carlo On Policy Evaluators

- Update is: $V^{\pi}(s_{it}) = V^{\pi}(s_{it}) + \alpha_k(s_j)(G_{i,t} V^{\pi}(s_{it}))$
- where we have allowed α to vary (let k be the total number of updates done so far, for state s_{it} = s_j)

If

$$\sum_{n=1}^{\infty} \underline{\alpha_n(s_j)} = \infty,$$
$$\sum_{n=1}^{\infty} \alpha_n^2(s_j) < \infty$$

• then incremental MC estimate will converge to true value of the policy $V^{\pi}(s_j)$

- Generally high variance estimator
 - Reducing variance can require a lot of data
 - In cases where data is very hard or expensive to acquire, or the stakes are high, MC may be impractical
- Requires episodic settings
 - Episode must end before data from episode can be used to update ${\it V}$

Monte Carlo (MC) Policy Evaluation Summary

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- Simple: Estimates expectation by empirical average (given episodes sampled from policy of interest)
- Updates V estimate using sample of return to approximate the expectation
- Does not assume Markov process
- Converges to true value under some (generally mild) assumptions
- **Note:** Sometimes is preferred over dynamic programming for policy evaluation *even if know the true dynamics model and reward*

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

- "If one had to identify one idea as central and novel to reinforcement learning, it would undoubtedly be temporal-difference (TD) learning." – Sutton and Barto 2017
- Combination of Monte Carlo & dynamic programming methods
- Model-free
- Can be used in episodic or infinite-horizon non-episodic settings
- Immediately updates estimate of V after each (s, a, r, s') tuple

Temporal Difference Learning for Estimating V

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
- $G_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$ in MDP *M* under policy π
- $V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$
- Recall Bellman operator (if know MDP models)

$$\underline{B^{\pi}V(s)} = r(s,\pi(s)) + \gamma \sum_{s' \in S} p(s'|s,\pi(s))V(s')$$

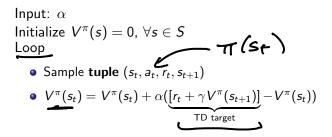
In incremental every-visit MC, update estimate using 1 sample of return (for the current *i*th episode)
 V^π(s) = V^π(s) + α(G_{i,t} - V^π(s))
 Idea: have an estimate of V^π, use to estimate expected return
 V^π(s) = V^π(s) + α([r_t + γV^π(s_{t+1})] - V^π(s))

Temporal Difference [TD(0)] Learning

- Aim: estimate $V^{\pi}(s)$ given episodes generated under policy π
 - $s_1, a_1, r_1, s_2, a_2, r_2, \ldots$ where the actions are sampled from π
- TD(0) learning / 1-step TD learning: update estimate towards target

- Can immediately update value estimate after (s, a, r, s') tuple
- Don't need episodic setting

Temporal Difference [TD(0)] Learning Algorithm



Compute new V^{π} at the end of 1 trajectory

Input:
$$lpha$$

Initialize $V^{\pi}(s)=$ 0, $\forall s\in S$
Loop

• Sample **tuple**
$$(s_t, a_t, r_t, s_{t+1})$$

•
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

Example Mars rover: $\mathsf{R} = [\ 1 \ 0 \ 0 \ 0 \ 0 \ +10]$ for any action

• $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode

• Trajectory =
$$(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$$

TD estimeth of all shar, $\gamma < 1$ $\alpha = ($
 $(s_3, a_1, 0, s_2)$ $V'(s_3) = 4$ $O + \alpha (O + \gamma \cdot O - O)$
 $(s_2, a_1, 0, s_2)$ $V''(s_3) = 0$
 $V''(s_1) = ($

Worked Example TD Learning

Input: α Initialize $V^{\pi}(s) = 0, \forall s \in S$ Loop

• Sample tuple
$$(s_t, a_t, r_t, s_{t+1})$$

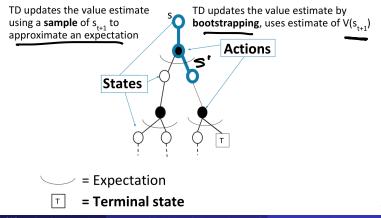
• $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$

Example:

- Mars rover: R = [1 0 0 0 0 0 + 10] for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = (s_3 , a_1 , 0, s_2 , a_1 , 0, s_2 , a_1 , 0, s_1 , a_1 , 1, terminal)
- TD estimate of all states (init at 0) with $\alpha = 1$, $\gamma < 1$? V = [1 0 0 0 0 0 0 0]
- First visit MC estimate of V of each state? [1 $\gamma \gamma^2$ 0 0 0 0]

Temporal Difference (TD) Policy Evaluation

$$V^{\pi}(s_t) = r(s_t, \pi(s_t)) + \gamma \sum_{s_{t+1}} P(s_{t+1}|s_t, \pi(s_t)) V^{\pi}(s_{t+1})$$
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha([r_t + \gamma V^{\pi}(s_{t+1})] - V^{\pi}(s_t))$$



Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

Winter 2022 40 / 67

Check Your Understanding L3N2: Polleverywhere Poll Temporal Difference [TD(0)] Learning Algorithm

Input:
$$lpha$$

Initialize $V^{\pi}(s)=$ 0, $orall s\in S$
Loop

• Sample tuple (s_t, a_t, r_t, s_{t+1})

•
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

Select all that are true

- **(**) If $\alpha = 0$ TD will weigh the TD target more than the past V estimate
- 2 If $\alpha = 1$ TD will update the V estimate to the TD target
- If α = 1 TD in MDPs where the policy goes through states with multiple possible next states, V may oscillate forever
- **(4)** There exist deterministic MDPs where $\alpha = 1$ TD will converge

Break

۲

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

<ロト <問ト < 目ト < 目ト

Check Your Understanding L3N2: Polleverywhere Poll Temporal Difference [TD(0)] Learning Algorithm

Input: α Initialize $V^{\pi}(s) = 0, \forall s \in S$ Loop

• Sample tuple (s_t, a_t, r_t, s_{t+1})

•
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

Answers. If $\alpha = 1$ TD will update to the TD target. If $\alpha = 1$ TD in MDPs where the policy goes through states with multiple possible next states, V may oscillate forever. There exist deterministic MDPs where $\alpha = 1$ TD will converge.

Summary: Temporal Difference Learning

- Combination of Monte Carlo & dynamic programming methods
- Model-free
- Bootstraps and samples
- relies on Martic property
- Can be used in episodic or infinite-horizon non-episodic settings
- Immediately updates estimate of V after each (s, a, r, s') tuple
- Biased estimator (early on will be influenced by initialization, and won't be • unibased estimator)
- Generally lower variance than Monte Carlo policy evaluation
- Consistent estimator if learning rate α satisfies same conditions specified for incremental MC policy evaluation to converge

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

Certainty Equivalence V^{π} MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each (s_i, a_i, r_i, s_{i+1}) tuple
 - Recompute maximum likelihood MDP model for (s, a)

$$\hat{P}(s'|s,a) = rac{1}{N(s,a)} \sum_{k=1}^{i} \mathbb{1}(s_k = s, a_k = a, s_{k+1} = s')$$

$$\hat{r}(s,a) = rac{1}{N(s,a)}\sum_{k=1}^{\prime}\mathbb{1}(s_k = s, a_k = a)r_k$$

• Compute V^{π} using MLE MDP ² (using any dynamic programming method from lecture 2))

²Requires initializing for all (s, a) pairs

Emma Brunskill (CS234 Reinforcement Learn Lecture 3: Model-Free Policy Evaluation: Po

<i>s</i> ₁	s ₂	s ₃	s ₄	s_5	s ₆	<i>S</i> ₇
$R(s_1) = +1$ Okay Field Site	$R(s_2) = 0$	$R(s_3) = 0$	$R(s_4) = 0$	$R(s_5) = 0$		R(s7) = +10 Fantastic Field Site

- Mars rover: R = [1 0 0 0 0 + 10] for any action
- $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode
- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- First visit MC estimate of V of each state? [1 $\gamma \gamma^2$ 0 0 0 0]
- TD estimate of all states (init at 0) with $\alpha = 1$ is $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix}$
- Optional exercise: What is the certainty equivalent estimate?
- $\hat{r} = [1 \ 0 \ 0 \ 0 \ 0 \ 0], \ \hat{p}(terminate|s_1, a_1) = \hat{p}(s_2|s_3, a_1) = 1$

Certainty Equivalence V^{π} MLE MDP Model Estimates

- Model-based option for policy evaluation without true models
- After each (*s*, *a*, *r*, *s'*) tuple
 - Recompute maximum likelihood MDP model for (s, a)

$$\hat{P}(s'|s,a) = rac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} \mathbb{1}(s_{k,t} = s, a_{k,t} = a, s_{k,t+1} = s')$$

$$\hat{r}(s,a) = rac{1}{N(s,a)} \sum_{k=1}^{K} \sum_{t=1}^{L_k-1} \mathbb{1}(s_{k,t} = s, a_{k,t} = a)r_{t,k}$$

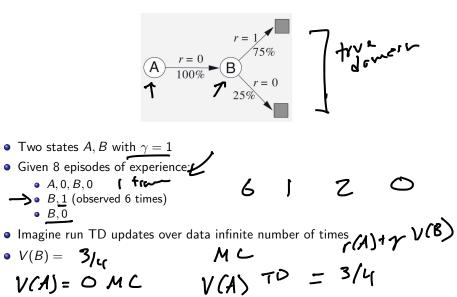
• Compute V^{π} using MLE MDP

- Cost: Updating MLE model and MDP planning at each update (O(|S|³) for analytic matrix solution, O(|S|²|A|) for iterative methods)
- Very data efficient and very computationally expensive
- Consistent (will converge to right estimate for Markov models)
- Can also easily be used for off-policy evaluation (which we will shortly define and discuss)

- Estimating the expected return of a particular policy if don't have access to true MDP models
- Monte Carlo policy evaluation
 - Policy evaluation when don't have a model of how the world work
 - Given on-policy samples
- Temporal Difference (TD)
- Certainty Equivalence with dynamic programming
- Batch policy evaluation

- Batch (Offline) solution for finite dataset
 - Given set of K episodes
 - Repeatedly sample an episode from K
 - Apply MC or TD(0) to the sampled episode
- What do MC and TD(0) converge to?

AB Example: (Ex. 6.4, Sutton & Barto, 2018)



AB Example: (Ex. 6.4, Sutton & Barto, 2018)

• TD Update:
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - B,1 (observed 6 times)
 - *B*,0
- Imagine run TD updates over data infinite number of times

 \land

- *V*(*B*) = 0.75 by TD or MC
- What about V(A)? MC

AB Example: (Ex. 6.4, Sutton & Barto, 2018)

• TD Update:
$$V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} - V^{\pi}(s_t))$$

- Two states A, B with $\gamma = 1$
- Given 8 episodes of experience:
 - A, 0, B, 0
 - B,1 (observed 6 times)
 - *B*,0
- Imagine run TD updates over data infinite number of times
- *V*(*B*) = 0.75 by TD or MC
- What about V(A)?

$$V^{MC}(A) = 0 V^{TD}(A) = .75$$

Batch MC and TD: Converges

- Monte Carlo in batch setting converges to min MSE (mean squared error)
 - Minimize loss with respect to observed returns
 - In AB example, V(A) = 0
- TD(0) converges to DP policy V^{π} for the MDP with the maximum likelihood model estimates
- Aka same as dynamic programming with certainty equivalence!
 - Maximum likelihood Markov decision process model

$$\hat{P}(s'|s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{i} \mathbb{1}(s_k = s, a_k = a, s_{k+1} = s')$$

$$\hat{r}(s,a) = \frac{1}{N(s,a)} \sum_{k=1}^{i} \mathbb{1}(s_k = s, a_k = a) r_k$$

- Compute V^{π} using this model
- In AB example, V(A) = 0.75

Some Important Properties to Evaluate Model-free Policy Evaluation Algorithms

- Data efficiency & Computational efficiency
- In simple TD(0), use (s, a, r, s') once to update V(s)
 - O(1) operation per update
 - In an episode of length L, O(L)
- In MC have to wait till episode finishes, then also O(L)
- MC can be more data efficient than simple TD
- But TD exploits Markov structure
 - If in Markov domain, leveraging this is helpful
- Dynamic programming with certainty equivalence also uses Markov structure

Estimating the expected return of a particular policy if don't have access to true MDP models. Ex. evaluating average purchases per session of new product recommendation system

- Monte Carlo policy evaluation
 - Policy evaluation when we don't have a model of how the world works
 - Given on policy samples
 - Given off policy samples
- Temporal Difference (TD)
- Dynamic Programming with certainty equivalence
- Metrics to evaluate and compare algorithms
 - Robustness to Markov assumption
 - Bias/variance characteristics
 - Data efficiency
 - Computational efficiency

- Last Time:
 - Markov reward / decision processes
 - Policy evaluation & control when have true model (of how the world works)
- Today
 - Policy evaluation without known dynamics & reward models
- Next Time:
 - Control when don't have a model of how the world works

<i>s</i> ₁	s ₂	<i>s</i> ₃	s ₄	S_5	<i>s</i> ₆	<i>S</i> ₇
$R(s_1) = +1$ Okay Field Site	$R(s_2) = 0$	$R(s_3) = 0$	$R(s_4) = 0$	$R(s_5) = 0$		R(s7) = +10 Fantastic Field Site

• Mars rover: R = [1 0 0 0 0 0 + 10] for any action

• $\pi(s) = a_1 \ \forall s, \ \gamma = 1$. any action from s_1 and s_7 terminates episode

- Trajectory = $(s_3, a_1, 0, s_2, a_1, 0, s_2, a_1, 0, s_1, a_1, 1, \text{terminal})$
- First visit MC estimate of V of each state? $[1 \gamma \gamma^2 0 0 0 0]$
- TD estimate of all states (init at 0) with $\alpha = 1$ is $[1 \ 0 \ 0 \ 0 \ 0 \ 0]$
- What is the certainty equivalent estimate?
- $\hat{r} = [1 \ 0 \ 0 \ 0 \ 0 \ 0], \ \hat{p}(terminate|s_1, a_1) = \hat{p}(s_2|s_3, a_1) = 1$
- $\hat{p}(s_1|s_2, a_1) = .5$, $\hat{p}(s_2|s_2, a_1) = .5$, V =
 - [1 gamma*.5/ (1-gamma*.5). gamma^2*.5/(1-gamma*.5) ...]