Lecture 4: Model Free Control and Function Approximation

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2023

• Structure and content drawn in part from David Silver's Lecture 5 and Lecture 6. For additional reading please see SB Sections 5.2-5.4, 6.4, 6.5, 6.7

Check Your Understanding L4N1: Model-free Generalized Policy Improvement

- Consider policy iteration _Repeat: • Policy evaluation: compute Q^{π} ▶ Policy improvement $\pi_{i+1}(s) = \arg \max_a Q^{\pi_i}(s, a)$ • Question: is this π_{i+1} deterministic or stochastic? • Answer, Deterministic, Stochastic, Not Sure • Now consider evaluating the policy of this new π_{i+1} . Recall in model-free policy evaluation, we estimated V^{π} , using π to generate new trajectories • Question: Can we compute $Q^{\pi_{i+1}}(s,a) \forall s, a$ by using this π_{i+1} to
- Question: Can we compute $Q^{n_{i+1}}(s, a) \forall s, a$ by using this π_{i+1} to generate new trajectories?
- Answer: True False Not Sure

Check Your Understanding L4N1: Model-free Generalized Policy Improvement

- Consider policy iteration
- Repeat:
 - Policy evaluation: compute Q^{π}
 - Policy improvement $\pi_{i+1}(s) = \arg \max_a Q^{\pi_i}(s, a)$
- Question: is this π_{i+1} deterministic or stochastic? Answer: Deterministic
- Now consider evaluating the policy of this new π_{i+1} . Recall in model-free policy evaluation, we estimated V^{π} , using π to generate new trajectories
- Question: Can we compute Q^{π_{i+1}}(s, a) ∀s, a by using this π_{i+1} to generate new trajectories? Answer: No.

- Last time: Policy evaluation with no knowledge of how the world works (MDP model not given)
- Control (making decisions) without a model of how the world works
- Generalization Value function approximation

Todays Lecture

Model-Free Control with a Tabular Representation

- Generalized Policy Improvement
- Monte-Carlo Control with Tabular Representations
- Temporal Difference Methods for Control

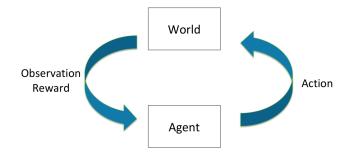
2 Value Function Approximation

- Model Free Value Function Approximation Policy Evaluation
- Monte Carlo Value Function Approximation Policy Evaluation
- Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
- Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

3 Control using Value Function Approximation

- Initialize policy π
- Repeat:
 - Policy evaluation: compute Q^{π}
 - Policy improvement: update π given Q^{π}
- May need to modify policy evaluation:
 - If π is deterministic, can't compute Q(s,a) for any $a \neq \pi(s)$
- How to interleave policy evaluation and improvement?
 - $\bullet\,$ Policy improvement is now using an estimated Q

The Problem of Exploration



- Goal: Learn to select actions to maximize total expected future reward
- Problem: Can't learn about actions without trying them (need to *explore*
- Problem: But if we try new actions, spending less time taking actions that our past experience suggests will yield high reward (need to *exploit* knowledge of domain to achieve high rewards)

- Simple idea to balance exploration and achieving rewards
- Let |A| be the number of actions
- Then an ϵ -greedy policy w.r.t. a state-action value Q(s, a) is $\pi(a|s) = 1 - \epsilon$ and max_a Q(s, a) ϵ randomly the faction a ϵA

- Simple idea to balance exploration and achieving rewards
- Let |A| be the number of actions
- Then an ϵ -greedy policy w.r.t. a state-action value Q(s,a) is $\pi(a|s) =$
 - arg max_a Q(s, a), w. prob $1 \epsilon + \frac{\epsilon}{|A|}$
 - $a' \neq rg \max Q(s,a)$ w. prob $rac{\epsilon}{|A|}$

- Recall we proved that policy iteration using given dynamics and reward models, was guaranteed to monotonically improve
- That proof assumed policy improvement output a deterministic policy
- Same property holds for ϵ -greedy policies

Monotonic ϵ -greedy Policy Improvement

Theorem

For any ϵ -greedy policy π_i , the ϵ -greedy policy w.r.t. Q^{π_i} , π_{i+1} is a monotonic improvement $V^{\pi_{i+1}} \ge V^{\pi_i}$ compute exectly

$$\begin{aligned} Q^{\pi_i}(s, \pi_{i+1}(s)) &= \sum_{a \in A} \pi_{i+1}(a|s) Q^{\pi_i}(s, a) \\ \mathbf{t} &= (\epsilon/|A|) \left[\sum_{a \in A} Q^{\pi_i}(s, a) \right] + (1-\epsilon) \max_a Q^{\pi_i}(s, a) \end{aligned}$$

In class I left this as an optional exercise. These post lecture slides include a proof on next slide

Monotonic ϵ -greedy Policy Improvement

Theorem

C

For any ϵ -greedy policy π_i , the ϵ -greedy policy w.r.t. Q^{π_i} , π_{i+1} is a monotonic improvement $V^{\pi_{i+1}} \ge V^{\pi_i}$

$$\begin{aligned} \pi_i(s, \pi_{i+1}(s)) &= \sum_{a \in A} \pi_{i+1}(a|s)Q^{\pi_i}(s, a) \\ &= (\epsilon/|A|) \left[\sum_{a \in A} Q^{\pi_i}(s, a) \right] + (1-\epsilon) \max_a Q^{\pi_i}(s, a) \\ &= (\epsilon/|A|) \left[\sum_{a \in A} Q^{\pi_i}(s, a) \right] + (1-\epsilon) \max_a Q^{\pi_i}(s, a) \frac{1-\epsilon}{1-\epsilon} \\ &= (\epsilon/|A|) \left[\sum_{a \in A} Q^{\pi_i}(s, a) \right] + (1-\epsilon) \max_a Q^{\pi_i}(s, a) \sum_{a \in A} \frac{\pi_i(a|s) - \frac{\epsilon}{|A|}}{1-\epsilon} \\ &\geq \frac{\epsilon}{|A|} \left[\sum_{a \in A} Q^{\pi_i}(s, a) \right] + (1-\epsilon) \sum_{a \in A} \frac{\pi_i(a|s) - \frac{\epsilon}{|A|}}{1-\epsilon} Q^{\pi_i}(s, a) \\ &= \sum_{a \in A} \pi_i(a|s)Q^{\pi_i}(s, a) = V^{\pi_i}(s) \end{aligned}$$

Model-Free Control with a Tabular Representation

Generalized Policy Improvement

• Monte-Carlo Control with Tabular Representations

- Temporal Difference Methods for Control
- Model Free Value Function Approximation Policy Evaluation
- Monte Carlo Value Function Approximation Policy Evaluation
- Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
- Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

Recall Monte Carlo Policy Evaluation, Now for Q

$$Q^{\pi}(s_1 a) = r(s_1 a) + \gamma \mathcal{Z}_{s'} P(s'|s_1 a) V^{\pi}(s')$$

1: Initialize
$$Q(s,a) = 0$$
, $N(s,a) = 0$ $\forall (s,a)$, $k = 1$, Input $\epsilon = 1, 2$

- 2: loop
- Sample k-th episode $(s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \ldots, s_{k,T})$ given 3:
- Compute $G_{k,t} = r_{k,t} + \gamma r_{k,t+1} + \gamma^2 r_{k,t+2} + \cdots \gamma^{T_i-1} r_k \tau$ $\forall t$ 3:

4: **for**
$$t = 1, ..., T$$
 do

- if First visit to (s,a) in episode k then 5:
- $\widetilde{N(s,a)} = N(s,a) + 1$ 6:

7:
$$Q(s_t, a_t) \neq Q(s_t, a_t) + \frac{1}{N(s,a)}(G_{k,t} - Q(s_t, a_t))$$
8: end if

- end for 9:
- k = k + 110:
- 11: end loop

Monte Carlo Online Control / On Policy Improvement

1: Initialize
$$Q(s, a) = 0$$
, $N(s, a) = 0$, $\forall (s, a)$, Set $\epsilon = 1$, $k = 1$
2: $\pi_k = \epsilon$ -greedy(Q) // Create initial ϵ -greedy policy
3: loop
4: Sample k-th episode $(s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \dots, s_{k,T})$ given π_k
4: $G_{k,t} = r_{k,t} + \gamma r_{k,t+1} + \gamma^2 r_{k,t+2} + \cdots \gamma^{T_i - 1} r_{k,T_i}$
for $t = 1, \dots, T$ do
4: $N(s, a) = N(s, a) + 1$
5: $Q(s_t, a_t) = Q(s_t, a_t) + \frac{1}{N(s,a)}(G_{k,t} - Q(s_t, a_t))$
9: end if
10: $k = k + 1$, $\epsilon = 1/k$
11: $\pi_k = \epsilon$ -greedy(Q) // Policy improvement
13: end loop

Winter 2023 18 / 98

- Computational complexity?
- Converge to optimal Q^* function?
- Empirical performance?

L4N2 Check Your Understanding: Monte Carlo Online Control / On Policy Improvement

1: Initialize
$$Q(s, a) = 0$$
, $N(s, a) = 0$, $\forall (s, a)$, Set $\epsilon = 1$, $k = 1$
2: $\pi_k = \epsilon$ -greedy (Q) // Create initial ϵ -greedy policy
3: **loop**
4: Sample k-th episode $(s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \dots, s_{k,T})$ given π_k
4: $G_{k,t} = r_{k,t} + \gamma r_{k,t+1} + \gamma^2 r_{k,t+2} + \dots \gamma^{T_i-1} r_{k,T_i}$
5: for $t = 1, \dots, T$ do
6: **if** First visit to (s, a) in episode k then
7: $N(s, a) = N(s, a) + 1$
8: $Q(s_t, a_t) = Q(s_t, a_t) + \frac{1}{N(s,a)}(G_{k,t} - Q(s_t, a_t))$
9: end if
10: end for
11: $k = k + 1$, $\epsilon = 1/k$
12: $\pi_k = \epsilon$ -greedy (Q) // Policy improvement
13: end loop

 Is Q and estimate of Q^{πk}? When might this procedure fail to compute the optimal Q*?

Emma Brunskill (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function

Definition of GLIE

• All state-action pairs are visited an infinite number of times

$$\lim_{i\to\infty}N_i(s,a)\to\infty$$

• Behavior policy (policy used to act in the world) converges to greedy policy $\lim_{i\to\infty} \pi(a|s) \to \arg\max_a Q(s,a) \text{ with probability 1}$

Definition of GLIE

All state-action pairs are visited an infinite number of times

$$\lim_{i\to\infty}N_i(s,a)\to\infty$$

- Behavior policy (policy used to act in the world) converges to greedy policy $\lim_{i\to\infty} \pi(a|s) \to \arg\max_a Q(s,a)$ with probability 1
- A simple GLIE strategy is ϵ -greedy where ϵ is reduced to 0 with the following rate: $\epsilon_i = 1/i$

Theorem

GLIE Monte-Carlo control converges to the optimal state-action value function $Q(s,a)
ightarrow Q^*(s,a)$

Table of Contents

Model-Free Control with a Tabular Representation

- Generalized Policy Improvement
- Monte-Carlo Control with Tabular Representations
- Temporal Difference Methods for Control
- Model Free Value Function Approximation Policy Evaluation
- Monte Carlo Value Function Approximation Policy Evaluation
- Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
- Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

- Initialize policy π
- Repeat:
 - Policy evaluation: compute Q^{π} using temporal difference updating
 - with ϵ -greedy policy Policy improvement: Same as Monte carlo policy improvement, set π to ϵ -greedy (Q^{*})
- First consider SARSA, which is an on-policy algorithm.
- On policy: SARSA is trying to compute an estimate Q of the policy being followed.

General Form of SARSA Algorithm

(7D(0))

- 1: Set initial ϵ -greedy policy π randomly, t = 0, initial state $s_t = s_0$ Natto
- 2: Take $a_t \sim \pi(s_t)$
- 3: Observe (r_t, s_{t+1})
- 4: loop
- Take action $a_{t+1} \sim \pi(s_{t+1})$ // Sample action from policy 5
- 6:
- Take action $a_{t+1} \sim n(s_{t+1}) / summer in the formula of the second second$ 7:
- Perform policy improvement: 8: VS T(S)= Drymax Q(S, a) with public els 12nd ct = t + 1, $\epsilon = 1/4$ 9:

10: end loop

- 1: Set initial ϵ -greedy policy π , t = 0, initial state $s_t = s_0$
- 2: Take $a_t \sim \pi(s_t)$ // Sample action from policy
- 3: Observe (r_t, s_{t+1})

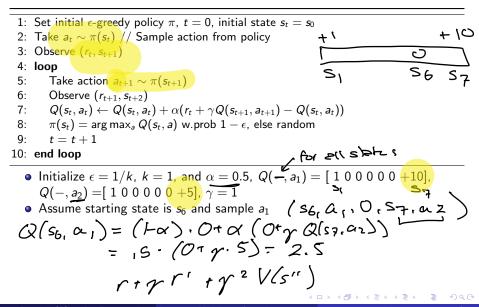
4: loop

5: Take action
$$a_{t+1} \sim \pi(s_{t+1})$$

- 6: Observe (r_{t+1}, s_{t+2})
- 7: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t))$
- 8: $\pi(s_t) = \arg \max_a Q(s_t, a)$ w.prob 1ϵ , else random
- 9: t=t+1, ϵ l/f for ex.

10: end loop

Worked Example: SARSA for Mars Rover



Worked Example: SARSA for Mars Rover

- 1: Set initial ϵ -greedy policy π , t = 0, initial state $s_t = s_0$
- 2: Take $a_t \sim \pi(s_t) //$ Sample action from policy
- 3: Observe (r_t, s_{t+1})
- 4: **loop**
- 5: Take action $a_{t+1} \sim \pi(s_{t+1})$
- 6: Observe (r_{t+1}, s_{t+2})
- 7: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t))$
- 8: $\pi(s_t) = \arg \max_a Q(s_t, a)$ w.prob 1ϵ , else random
- 9: t = t + 1
- 10: end loop
 - Initialize $\epsilon = 1/k$, k = 1, and $\alpha = 0.5$, $Q(-, a_1) = [1\ 0\ 0\ 0\ 0\ 0\ +10]$, $Q(-, a_2) = [1\ 0\ 0\ 0\ 0\ +5]$, $\gamma = 1$ • Tuple: $(s_6, a_1, 0, s_7, a_2, 5, s_7)$. • $Q(s_6, a_1) = .5 * 0 + .5 * (0 + \gamma Q(s_7, a_2)) = 2.5$

- Computational complexity?
- Converge to optimal Q^* function? Recall:
 - $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) Q(s_t, a_t))$
 - $\pi(s_t) = \arg \max_a Q(s_t, a)$ w.prob 1ϵ , else random
 - *Q* is an estimate of the performance of a policy that may be changing at each time step
- Empirical performance?

Theorem

SARSA for finite-state and finite-action MDPs converges to the optimal action-value, $Q(s, a) \rightarrow Q^*(s, a)$, under the following conditions:

- **(**) The policy sequence $\pi_t(a|s)$ satisfies the condition of GLIE
- **2** The step-sizes α_t satisfy the Robbins-Munro sequence such that

$$\sum_{t=1}^{\infty} \alpha_t = \infty$$
$$\sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

• For ex. $\alpha_t = \frac{1}{T}$ satisfies the above condition.

Properties of SARSA with ϵ -greedy policies

- Result builds on stochastic approximation
- Relies on step sizes decreasing at the right rate] Relies Munro
- Relies on Bellman backup contraction property
- Relies on bounded rewards and value function $ifr \in (0, \mathbb{R}^{m > x}]$ $(0, \frac{Km > x}{1 - \gamma})$

In class I discussed how these sort of results rely on stochastic approximation. In particular there is a proof that Q-learning (see slides later in this lecture) will converge under a set of assumptions that leverages a (CS234 Reinforcement Learn Lecture 4: Model Free Control and Function Winter 2023 33 / 98

- On-policy learning
 - Direct experience
 - Learn to estimate and evaluate a policy from experience obtained from following that policy
- Off-policy learning
 - Learn to estimate and evaluate a policy using experience gathered from following a different policy

- SARSA is an **on-policy** learning algorithm
- SARSA estimates the value of the current **behavior** policy (policy using to take actions in the world)
- And then updates that (behavior) policy
- Alternatively, can we directly estimate the value of π* while acting with another behavior policy π_b?
- Yes! Q-learning, an off-policy RL algorithm

Q-Learning: Learning the Optimal State-Action Value

- SARSA is an **on-policy** learning algorithm
- SARSA estimates the value of the current **behavior** policy (policy using to take actions in the world)
- And then updates the policy trying to estimate
- Alternatively, can we directly estimate the value of π^{*} while acting with another behavior policy π_b?
- Yes! Q-learning, an off-policy RL algorithm
- Key idea: Maintain state-action Q estimates and use to bootstrapuse the value of the best future action
- Recall SARSA

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha((r_t + \gamma Q(s_{t+1}, a_{t+1})) - Q(s_t, a_t))$$

arning:
$$\sqrt{\frac{1}{2}} \operatorname{Max} Q(s_t, a_t)$$

• Q-learning:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha((r_t + \gamma \max_{a'} Q(s_{t+1}, a')) - Q(s_t, a_t))$$

1: Initialize $Q(s, a), \forall s \in S, a \in A \ t = 0$, initial state $s_t = s_0$ 2: Set π_b to be ϵ -greedy w.r.t. Q3: **loop** 4: Take $a_t \sim \pi_b(s_t) //$ Sample action from policy. 5: Observe (r_t, s_{t+1}) 6: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t))$ 7: $\pi(s_t) = \arg \max_a Q(s_t, a)$ w.prob $1 - \epsilon$, else random 8: t = t + 19: end loop

Worked Example: *e*-greedy Q-Learning Mars

- 1: Initialize $Q(s, a), \forall s \in S, a \in A \ t = 0$, initial state $s_t = s_0$
- 2: Set π_b to be ϵ -greedy w.r.t. Q
- 3: **loop**
- 4: Take $a_t \sim \pi_b(s_t) //$ Sample action from policy
- 5: Observe (r_t, s_{t+1})
- 6: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_a Q(s_{t+1}, a) Q(s_t, a_t))$
- 7: $\pi(s_t) = \arg \max_a Q(s_t, a)$ w.prob 1ϵ , else random
- 8: t = t + 1
- 9: end loop
 - Initialize $\epsilon = 1/k$, k = 1, and $\alpha = 0.5$, $Q(-, a_1) = [1\ 0\ 0\ 0\ 0\ 0\ +10]$, $Q(-, a_2) = [1\ 0\ 0\ 0\ 0\ +5]$, $\gamma = 1$
 - Like in SARSA example, start in s_6 and take a_1 .
- 36, a1, O, S7

$$m = \kappa Q(s_7, c_) = 10$$

Worked Example: *e*-greedy Q-Learning Mars

- 1: Initialize $Q(s, a), \forall s \in S, a \in A \ t = 0$, initial state $s_t = s_0$
- 2: Set π_b to be ϵ -greedy w.r.t. Q
- 3: **loop**
- 4: Take $a_t \sim \pi_b(s_t)$ // Sample action from policy
- 5: Observe (r_t, s_{t+1})
- 6: $Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \max_a Q(s_{t+1}, a) Q(s_t, a_t))$
- 7: $\pi(s_t) = \arg \max_a Q(s_t, a)$ w.prob 1ϵ , else random
- 8: t = t + 1
- 9: end loop
 - Initialize $\epsilon = 1/k$, k = 1, and $\alpha = 0.5$, $Q(-, a_1) = [1 \ 0 \ 0 \ 0 \ 0 \ +10]$, $Q(-, a_2) = [1 \ 0 \ 0 \ 0 \ 0 \ +5]$, $\gamma = 1$
 - Tuple: $(s_6, a_1, 0, s_7)$.
 - $Q(s_6, a_1) = 0 + .5 * (0 + \gamma \max_{a'} Q(s_7, a') 0) = .5*10 = 5$
 - Recall that in the SARSA update we saw $Q(s_6, a_1) = 2.5$ because we used the actual action taken at s_7 instead of the max
 - Does how Q is initialized matter (initially? asymptotically?)? Asymptotically no, under mild condiditions, but at the beginning, yes

- What conditions are sufficient to ensure that Q-learning with ε-greedy exploration converges to optimal Q*?
 Visit all (s, a) pairs infinitely often, and the step-sizes α_t satisfy the Robbins-Munro sequence. Note: the algorithm does not have to be greedy in the limit of infinite exploration (GLIE) to satisfy this (could keep ε large).
- What conditions are sufficient to ensure that Q-learning with ε-greedy exploration converges to optimal π*?
 The algorithm is GLIE, along with the above requirement to ensure the Q value estimates converge to the optimal Q.

1 Model-Free Control with a Tabular Representation

- Generalized Policy Improvement
- Monte-Carlo Control with Tabular Representations
- Temporal Difference Methods for Control

2 Value Function Approximation

- Model Free Value Function Approximation Policy Evaluation
- Monte Carlo Value Function Approximation Policy Evaluation
- Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
- Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

3 Control using Value Function Approximation

• Don't want to have to explicitly store or learn for every single state a

- Dynamics or reward model
- Value
- State-action value
- Policy
- Want more compact representation that generalizes across state or states and actions

- Reduce memory needed to store (P, R)
- Reduce computation needed to compute $(P, R)/V/Q/\pi$
- Reduce experience needed to find a good $P, R/V/Q/\pi$

Function Approximators

• Many possible function approximators including

- Linear combinations of features
- Neural networks
- Decision trees
- Nearest neighbors
- Fourier/ wavelet bases
- In this class we will focus on function approximators that are differentiable (Why?)
- Two very popular classes of differentiable function approximators
 - Linear feature representations (Today)
 - Neural networks (Next lecture)

- Consider a function J(w) that is a differentiable function of a parameter vector w
- Goal is to find parameter \boldsymbol{w} that minimizes J

• The gradient of
$$J(w)$$
 is
 $\nabla J(w) = \begin{bmatrix} \frac{\partial J}{\partial w_1} & \frac{\partial J}{\partial w_2} & \dots & \frac{\partial J}{\partial w_n} \end{bmatrix}$

Value Function Approximation for Policy Evaluation with an Oracle

- First assume we could query any state s and an oracle would return the true value for $V^{\pi}(s)$
- Similar to supervised learning: assume given $(s, V^{\pi}(s))$ pairs
- The objective is to find the best approximate representation of V^{π} given a particular parameterized function $\hat{V}(s; w)$

Stochastic Gradient Descent

- Generally use mean squared error and define the loss as

$$J(oldsymbol{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}(s;oldsymbol{w}))^2]$$

• Can use gradient descent to find a local minimum

$$\Delta \boldsymbol{w} = -\frac{1}{2} \alpha \nabla_{\boldsymbol{w}} J(\boldsymbol{w})$$

• Stochastic gradient descent (SGD) uses a finite number of (often one) samples to compute an approximate gradient: $\nabla \omega \exists \omega \rangle = \nabla \omega \in \pi \left[\nabla^{\pi}(\varsigma) - \hat{\mathcal{Y}}(\varsigma, \omega) \right]^{2}$ $= \in_{\pi} 2 \left(\sqrt{\pi}(\varsigma) - \hat{\mathcal{Y}}(\varsigma, \omega) \right) \nabla \omega \vee (\varsigma, \omega)$

• Expected SGD is the same as the full gradient update

Stochastic Gradient Descent

- Goal: Find the parameter vector *w* that minimizes the loss between a true value function V^π(s) and its approximation V̂(s; *w*) as represented with a particular function class parameterized by *w*.
- Generally use mean squared error and define the loss as

$$J(oldsymbol{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}(s;oldsymbol{w}))^2]$$

• Can use gradient descent to find a local minimum

$$\Delta \boldsymbol{w} = -\frac{1}{2}\alpha \nabla_{\boldsymbol{w}} J(\boldsymbol{w})$$

• Stochastic gradient descent (SGD) uses a finite number of (often one) samples to compute an approximate gradient:

$$\Delta_{w}J(w) = \Delta_{w}E_{\pi}[V^{\pi}(s) - \hat{V}(s;w)]^{2}$$

= $-E_{\pi}[2(V^{\pi}(s) - \hat{V}(s;w)]\Delta_{w}\hat{V}(s,w)$

Expected SGD is the same as the full gradient update

- Generalized Policy Improvement
- Monte-Carlo Control with Tabular Representations
- Temporal Difference Methods for Control

Value Function Approximation

- Model Free Value Function Approximation Policy Evaluation
- Monte Carlo Value Function Approximation Policy Evaluation
- Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
- Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

- No oracle to tell true $V^{\pi}(s)$ for any state s
- Use model-free value function approximation

- Recall model-free policy evaluation (Lecture 3)
 - Following a fixed policy π (or had access to prior data)
 - Goal is to estimate V^{π} and/or Q^{π}
- Maintained a lookup table to store estimates V^{π} and/or Q^{π}
- Updated these estimates after each episode (Monte Carlo methods) or after each step (TD methods)
- Now: in value function approximation, change the estimate update step to include fitting the function approximator

• Use a feature vector to represent a state s

$$\mathbf{x}(s) = \begin{pmatrix} x_1(s) \\ x_2(s) \\ \cdots \\ x_n(s) \end{pmatrix} \quad \begin{array}{c} \text{from of } \\ \text{from or } \\ \text{cx from or } \\ \text{webs}^{\text{from or }} \\ \end{array}$$

Linear Value Function Approximation for Prediction With An Oracle

 Represent a value function (or state-action value function) for a particular policy with a weighted linear combination of features

$$\hat{V}(s; \boldsymbol{w}) = \sum_{j=1}^{n} x_j(s) w_j = \boldsymbol{x}(s)^T \boldsymbol{w}$$

Objective function is

$$J(\boldsymbol{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \frac{\hat{V}(s; \boldsymbol{w}))^2}{\chi(s)^{\tau}}]$$

Recall weight update is

$$\Delta \boldsymbol{w} = -\frac{1}{2} \alpha \nabla_{\boldsymbol{w}} J(\boldsymbol{w})$$
• Update is:

$$\Delta \boldsymbol{\omega} = \mathcal{O}_{\boldsymbol{w}} \left(\nabla^{\boldsymbol{\pi}} \left(\boldsymbol{\varsigma} \right) - \chi \left(\boldsymbol{\varsigma} \right)^{\boldsymbol{\tau}} \boldsymbol{\omega} \right) \chi \left(\boldsymbol{\varsigma} \right)$$

Linear Value Function Approximation for Prediction With An Oracle

 Represent a value function (or state-action value function) for a particular policy with a weighted linear combination of features

$$\hat{V}(s; \boldsymbol{w}) = \sum_{j=1}^{n} x_j(s) w_j = \boldsymbol{x}(s)^T \boldsymbol{w}$$

Objective function is

$$J(oldsymbol{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}(s;oldsymbol{w}))^2]$$

Recall weight update is

$$\Delta \boldsymbol{w} = -\frac{1}{2} \alpha \nabla_{\boldsymbol{w}} J(\boldsymbol{w})$$

- Update is: $\Delta \boldsymbol{w} = \boldsymbol{z} \alpha (\boldsymbol{V}^{\pi}(s) \boldsymbol{x}(s)^{T} \boldsymbol{w}) \boldsymbol{x}$
- Update = step-size × prediction error × feature value

Linear Value Function Approximation for Policy Evaluation: Plug In Estimate for $V^{\pi}(s)$

 Represent a value function (or state-action value function) for a particular policy with a weighted linear combination of features

$$\hat{V}(s; \boldsymbol{w}) = \sum_{j=1}^{n} x_j(s) w_j = \boldsymbol{x}(s)^T \boldsymbol{w}$$

Objective function is

$$J(oldsymbol{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}(s;oldsymbol{w}))^2]$$

Recall weight update is

$$\Delta \boldsymbol{w} = -\frac{1}{2} \alpha \nabla_{\boldsymbol{w}} J(\boldsymbol{w})$$

• Update is: $\Delta \boldsymbol{w} = \mathscr{Z} \alpha (V^{\pi}(s) - \boldsymbol{x}(s)^{T} \boldsymbol{w}) \boldsymbol{x}$

- Generalized Policy Improvement
- Monte-Carlo Control with Tabular Representations
- Temporal Difference Methods for Control

Value Function Approximation

- Model Free Value Function Approximation Policy Evaluation
- Monte Carlo Value Function Approximation Policy Evaluation
- Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
- Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

- Return G_t is an unbiased but noisy sample of the true expected return $V^{\pi}(s_t)$
- Therefore can reduce MC VFA to doing supervised learning on a set of (state, return) pairs: (s₁, G₁), (s₂, G₂),..., (s_T, G_T)
 - Substitute G_t for the true $V^{\pi}(s_t)$ when fit function approximator

Monte Carlo Value Function Approximation

- Return G_t is an unbiased but noisy sample of the true expected return $V^{\pi}(s_t)$
- Therefore can reduce MC VFA to doing supervised learning on a set of (state,return) pairs: $\langle s_1, G_1 \rangle, \langle s_2, G_2 \rangle, \dots, \langle s_T, G_T \rangle$
 - Substitute G_t for the true $V^{\pi}(s_t)$ when fit function approximator
- Concretely when using linear VFA for policy evaluation $V^{\pi}(s_{1})$

$$\Delta \boldsymbol{w} = \alpha(\underline{G_t} - \hat{V}(s_t; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{V}(s_t; \boldsymbol{w})$$

= $\alpha(\overline{G_t} - \hat{V}(s_t; \boldsymbol{w})) \boldsymbol{x}(s_t)$
= $\alpha(G_t - \boldsymbol{x}(s_t)^T \boldsymbol{w}) \boldsymbol{x}(s_t)$

• Note: G_t may be a very noisy estimate of true return

MC Linear Value Function Approximation for Policy Evaluation

1: Initialize w = 0, k = 12: **loop** 3: Sample k-th episode $(s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \dots, s_{k,L_k})$ given π 4: **for** $t = 1, \dots, L_k$ **do** 5: **if** First visit to (s) in episode k **then** 6: $G_t(s) = \sum_{j=t}^{L_k} r_{k,j}$ 7: Update weights: $G_T(s) - \chi(s)^T \omega \chi(s)$ $\omega \neq 0 \chi(s)^T \omega \chi(s)$ 8: **end if**

- 9: end for
- 10: k = k + 1
- 11: end loop

Linear Value Function Approximation for Policy Evaluation: Plug In Estimate for $V^{\pi}(s)$

 Represent a value function (or state-action value function) for a particular policy with a weighted linear combination of features

$$\hat{V}(s; \boldsymbol{w}) = \sum_{j=1}^{n} x_j(s) w_j = \boldsymbol{x}(s)^T \boldsymbol{w}$$

Objective function is

$$J(oldsymbol{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}(s;oldsymbol{w}))^2]$$

Recall weight update is

$$\Delta \boldsymbol{w} = -\frac{1}{2} \alpha \nabla_{\boldsymbol{w}} J(\boldsymbol{w})$$

• Update is: $\Delta \boldsymbol{w} = \mathscr{A} \alpha (V^{\pi}(s) - \boldsymbol{x}(s)^{T} \boldsymbol{w}) \boldsymbol{x}$

- Generalized Policy Improvement
- Monte-Carlo Control with Tabular Representations
- Temporal Difference Methods for Control

Value Function Approximation Lecture finished here, to be

- Model Free Value Function AppcontinuedFormextalecture
- Monte Carlo Value Function Approximation Policy Evaluation
- Temporal Difference (TD(0)) Value Function Approximation Policy Evaluation
- Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

Refresh Your Knowledge L4. Polleverywhere Poll

Optional (no formal poll)

• Which of the following equations express a TD update?

•
$$V(s_t) = r(s_t, a_t) + \gamma \sum_{s'} p(s'|s_t, a_t) V(s')$$

• $V(s_t) = (1 - \alpha) V(s_t) + \alpha (r(s_t, a_t) + \gamma V(s_{t+1}))$
• $V(s_t) = (1 - \alpha) V(s_t) + \alpha \sum_{i=t}^{H} r(s_i, a_i)$
• $V(s_t) = (1 - \alpha) V(s_t) + \alpha \max_a (r(s_t, a) + \gamma V(s_{t+1}))$
• Not sure

- Bootstrapping is
 - When samples of (s,a,s') transitions are used to approximate the true expectation over next states
 - When an estimate of the next state value is used instead of the true next state value
 - Used in Monte-Carlo policy evaluation
 - Ont sure

Refresh Your Knowledge L4. Polleverywhere Poll

Optional (no formal poll)

- Which of the following equations express a TD update? True. $V(s_t) = (1 - \alpha)V(s_t) + \alpha(r(s_t, a_t) + \gamma V(s_{t+1}))$
- Bootstrapping is when: An estimate of the next state value is used instead of the true next state value

Check Your Understanding L4N2: MC for On Policy Control

• Mars rover with new actions:

• $r(-, a_1) = [1 \ 0 \ 0 \ 0 \ 0 \ +10], r(-, a_2)$

- Assume current greedy $\pi(s) = a_1 \; orall s, \; \epsilon{=}.5$
- Sample trajectory from ϵ -greedy policy
- Trajectory = (s_3 , a_1 , 0, s_2 , a_2 , 0, s_3 , a_1 , 0, s_2 , a_2 , 0, s_1 , a_1 , 1, terminal)
- First visit MC estimate of Q of each (s, a) pair?
- $Q^{\epsilon-\pi}(-,a_1) = [1 \ 0 \ 1 \ 0 \ 0 \ 0], \ Q^{\epsilon-\pi}(-,a_2) = [0 \ 1 \ 0 \ 0 \ 0 \ 0]$
- What is $\pi(s) = \arg \max_{a} Q^{\epsilon-\pi}(s, a) \forall s$? $\pi = [1 \ 2 \ 1 \text{ tie tie tie tie}]$
- Under the new ε-greedy policy, if k = 3, ε = 1/k
 With probability 2/3 choose π(s) else choose randomly. As an example, π(s₁) = a₁ with prob (2/3) else randomly choose an action. So the prob of picking a₁ will be 2/3 + (1/3) * (1/2) = 5/6

Optional (no formal

Optional (no formal poll)

• Mars rover with new actions:

• $r(-,a_1) = [1 \ 0 \ 0 \ 0 \ 0 \ +10], \ r(-,a_2) = [0 \ 0 \ 0 \ 0 \ 0 \ +5], \ \gamma = 1.$

- Initialize $\epsilon = 1/k$, k = 1, and $\alpha = 0.5$, $Q(-, a_1) = r(-, a_1)$, $Q(-, a_2) = r(-, a_2)$
- SARSA: (*s*₆, *a*₁, 0, *s*₇, *a*₂, 5, *s*₇).
- Does how Q is initialized matter (initially? asymptotically?)?
 Asymptotically no, under mild condiditions, but at the beginning, yes