### Lecture 5: Value Function Approximation

Emma Brunskill

CS234 Reinforcement Learning.

Winter 2023

The value function approximation structure for today closely follows much of David Silver's Lecture 6.

 In tabular MDPs, if using a decision policy that visits all states an infinite number of times, and in each state randomly selects an action, then (select all)

- Q-learning will converge to the optimal Q-values
- SARSA will converge to the optimal Q-values
- Q-learning is learning off-policy
- SARSA is learning off-policy
- Ont sure

A TD error > 0 can occur even if the current V(s) is correct ∀s: [select all]

- False
- Irue if the MDP has stochastic state transitions
- True if the MDP has deterministic state transitions

• In tabular MDPs, if using a decision policy that visits all states an infinite number of times, and in each state randomly selects an action, then (select all)

 A TD error > 0 can occur even if the current V(s) is correct ∀s: [select all]



#### A note on Monte Carlo vs TD estimates

- MC VFA
- Temporal Difference (TD(0)) Learning with Value Function Approximation
- Deep Q Learning

- Policy evaluation:  $\hat{V}^{\pi} \leftarrow (1 \alpha)\hat{V}^{\pi} + \alpha V_{target}$
- MC:  $V_{target}(s_t) = G_t$  (sum of discounted returns until the episode terminates)
  - Target is unbiased estimate of  $V^{\pi}$
  - Target can be high variance
- TD(0):  $V_{target}(s_t) = r_t + \gamma \hat{V}(s')$ 
  - Target is a biased estimate of  $V^{\pi}$
  - Target is lower variance
- Which one should we use? Is there other alternatives?

#### n-step TD estimates

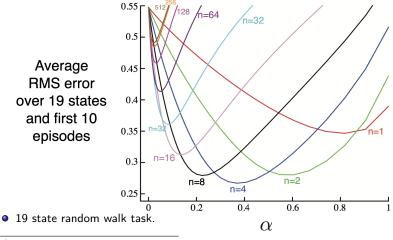
- Policy evaluation:  $\hat{V}^{\pi} \leftarrow (1 \alpha)\hat{V}^{\pi} + \alpha V_{target}$
- MC:  $V_{target}(s_t) = G_t$  (sum of discounted returns until the episode terminates)
  - Target is unbiased estimate of  $V^{\pi}$
  - Target can be high variance

• TD(0): 
$$V_{target}(s_t) = r_t + \gamma \hat{V}(s')$$

- Target is a biased estimate of  $V^{\pi}$
- Target is lower variance
- Best of both worlds?

• n-step TD: 
$$V_{target}(s_t) = r_t + \gamma r_{t+1} + \gamma r_{t+2} + ... \gamma^n \hat{V}(s_{t+n})$$

### Performance of n-step TD methods as a function of $\alpha$



<sup>1</sup>Figure 7.2 from Sutton and Barto 2018

1

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Value Function Approximation



#### 2 Value Function Approximation

- MC VFA
- Temporal Difference (TD(0)) Learning with Value Function
- Deep Q Learning

• Use a feature vector to represent a state s

$$m{x}(s) = \left(egin{array}{c} x_1(s) \ x_2(s) \ \ldots \ x_n(s) \end{array}
ight)$$

# Recall: Linear Value Function Approximation for Prediction With An Oracle

 Represent a value function (or state-action value function) for a particular policy with a weighted linear combination of features

$$\hat{V}(s; \boldsymbol{w}) = \sum_{j=1}^{n} x_j(s) w_j = \boldsymbol{x}(s)^T \boldsymbol{w}$$

Objective function is

$$J(oldsymbol{w}) = \mathbb{E}_{\pi}[(V^{\pi}(s) - \hat{V}(s;oldsymbol{w}))^2]$$

Recall weight update is

$$\Delta \boldsymbol{w} = -\frac{1}{2} \alpha \nabla_{\boldsymbol{w}} J(\boldsymbol{w})$$

- Update is:  $\Delta \boldsymbol{w} = -\frac{1}{2}\alpha (V^{\pi}(s) \boldsymbol{x}(s)^{T} \boldsymbol{w})\boldsymbol{x}$
- Update = step-size  $\times$  prediction error  $\times$  feature value



#### 2 Value Function Approximation

- MC VFA
- Temporal Difference (TD(0)) Learning with Value Function
- Deep Q Learning

### Recall: Monte Carlo Value Function Approximation

- Return  $G_t$  is an unbiased but noisy sample of the true expected return  $V^{\pi}(s_t)$
- Therefore can reduce MC VFA to doing supervised learning on a set of (state, return) pairs: (s<sub>1</sub>, G<sub>1</sub>), (s<sub>2</sub>, G<sub>2</sub>), ..., (s<sub>T</sub>, G<sub>T</sub>)
  - Substitute  $G_t$  for the true  $V^{\pi}(s_t)$  when fit function approximator
- Concretely when using linear VFA for policy evaluation

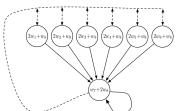
$$\Delta \boldsymbol{w} = \alpha(G_t - \hat{V}(s_t; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{V}(s_t; \boldsymbol{w})$$
  
=  $\alpha(G_t - \hat{V}(s_t; \boldsymbol{w})) \boldsymbol{x}(s_t)$   
=  $\alpha(G_t - \boldsymbol{x}(s_t)^T \boldsymbol{w}) \boldsymbol{x}(s_t)$ 

• Note: G<sub>t</sub> may be a very noisy estimate of true return

## MC Linear Value Function Approximation for Policy Evaluation

- 1: Initialize w = 0, k = 1
- 2: **loop**
- 3: Sample k-th episode  $(s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \ldots, s_{k,L_k})$  given  $\pi$
- 4: **for**  $t = 1, ..., L_k$  **do**
- 5: **if** First visit to (s) in episode k **then**
- 6:  $G_t(s) = \sum_{j=t}^{L_k} r_{k,j}$
- 7: Update weights:  $\Delta \boldsymbol{w} = \alpha (\boldsymbol{G}_t \boldsymbol{x}(\boldsymbol{s}_t)^T \boldsymbol{w}) \boldsymbol{x}(\boldsymbol{s}_t)$
- 8: end if
- 9: end for
- 10: k = k + 1
- 11: end loop

# Baird (1995)-Like Example with MC Policy Evaluation<sup>2</sup>



•  $x(s_1) = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} x(s_2) = \begin{bmatrix} 0 & 2 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \dots x(s_6) = \begin{bmatrix} 0 & 0 & 0 & 0 & 2 & 0 & 1 \end{bmatrix} x(s_7) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} r(s) = 0 \ \forall s \qquad 2 \ \text{actions } a_1 \ \text{solid line, } a_2 \ \text{dotted}$ 

• Small prob  $s_7$  goes to terminal state  $s_T$ 

- Consider trajectory  $(s_1, a_1, 0, s_7, a_1, 0, s_7, a_1, 0, s_7)$ .  $G(s_1) = 0$
- Let  $w_0 = [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1]$ . MC update:  $\Delta w = \alpha (G_t x(s_t)^T w) x(s_t)$



#### 2 Value Function Approximation

- MC VFA
- Temporal Difference (TD(0)) Learning with Value Function Approximation
- Deep Q Learning

# Temporal Difference (TD(0)) Learning with Value Function Approximation

- Uses bootstrapping and sampling to approximate true  $V^{\pi}$
- Updates estimate  $V^{\pi}(s)$  after each transition (s, a, r, s'):

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(r + \gamma V^{\pi}(s') - V^{\pi}(s))$$

- Target is  $r + \gamma V^{\pi}(s')$
- In value function approximation, target is  $r + \gamma \hat{V}^{\pi}(s'; \boldsymbol{w})$
- 3 forms of approximation:
  - Sampling
  - Bootstrapping
  - Output State St

# Temporal Difference (TD(0)) Learning with Value Function Approximation

- In value function approximation, target is r + γ V<sup>π</sup>(s'; w), a biased and approximated estimate of the true value V<sup>π</sup>(s)
- Can reduce doing TD(0) learning with value function approximation to supervised learning on a set of data pairs:
  - $\langle s_1, r_1 + \gamma \hat{V}^{\pi}(s_2; \boldsymbol{w}) \rangle, \langle s_2, r_2 + \gamma \hat{V}(s_3; \boldsymbol{w}) \rangle, \dots$
- Find weights to minimize mean squared error

$$J(\boldsymbol{w}) = \mathbb{E}_{\pi}[(r_j + \gamma \hat{V}^{\pi}(s_{j+1}, \boldsymbol{w}) - \hat{V}(s_j; \boldsymbol{w}))^2]$$

# Temporal Difference (TD(0)) Learning with Value Function Approximation

- In value function approximation, target is r + γ V<sup>π</sup>(s'; w), a biased and approximated estimate of the true value V<sup>π</sup>(s)
- Supervised learning on a different set of data pairs:  $\langle s_1, r_1 + \gamma \hat{V}^{\pi}(s_2; \boldsymbol{w}) \rangle, \langle s_2, r_2 + \gamma \hat{V}(s_3; \boldsymbol{w}) \rangle, \ldots$
- In linear TD(0)

$$\Delta \boldsymbol{w} = \alpha(\boldsymbol{r} + \gamma \hat{V}^{\pi}(\boldsymbol{s}'; \boldsymbol{w}) - \hat{V}^{\pi}(\boldsymbol{s}; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{V}^{\pi}(\boldsymbol{s}; \boldsymbol{w})$$
  
$$= \alpha(\boldsymbol{r} + \gamma \hat{V}^{\pi}(\boldsymbol{s}'; \boldsymbol{w}) - \hat{V}^{\pi}(\boldsymbol{s}; \boldsymbol{w})) \boldsymbol{x}(\boldsymbol{s})$$
  
$$= \alpha(\boldsymbol{r} + \gamma \boldsymbol{x}(\boldsymbol{s}')^{\mathsf{T}} \boldsymbol{w} - \boldsymbol{x}(\boldsymbol{s})^{\mathsf{T}} \boldsymbol{w}) \boldsymbol{x}(\boldsymbol{s})$$

Note: we treat V<sup>π</sup>(s'; w) in target as a scalar (it is a function of w but weight update ignores that)

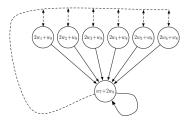
# TD(0) Linear Value Function Approximation for Policy Evaluation

- 1: Initialize w = 0, k = 1
- 2: **loop**
- 3: Sample tuple  $(s_k, a_k, r_k, s_{k+1})$  given  $\pi$
- 4: Update weights:

$$\boldsymbol{w} = \boldsymbol{w} + \alpha (\boldsymbol{r} + \gamma \boldsymbol{x}(\boldsymbol{s}')^{\mathsf{T}} \boldsymbol{w} - \boldsymbol{x}(\boldsymbol{s})^{\mathsf{T}} \boldsymbol{w}) \boldsymbol{x}(\boldsymbol{s})$$

5: k = k + 1
6: end loop

# Baird Example with TD(0) On Policy Evaluation <sup>1</sup>

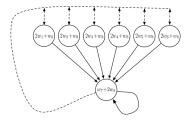


- $x(s_1) = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} x(s_2) = \begin{bmatrix} 0 & 2 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \dots x(s_6) = \begin{bmatrix} 0 & 0 & 0 & 0 & 2 & 0 & 1 \end{bmatrix} x(s_7) = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix} r(s) = 0 \ \forall s$  2 actions  $a_1$  solid line,  $a_2$  dotted
- Small prob  $s_7$  goes to terminal state  $s_T$
- Consider tuple (*s*<sub>1</sub>, *a*<sub>1</sub>, 0, *s*<sub>7</sub>).
- Let  $w_0 = [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1]$ . TD update:  $\Delta w = \alpha (r + \gamma x(s')^T w x(s)^T w) x(s)$

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Value Function Approximation

<sup>&</sup>lt;sup>1</sup>Figure from Sutton and Barto 2018

# Baird Example with TD(0) On Policy Evaluation <sup>1</sup>



- $x(s_1) = [2 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1] \ x(s_2) = [0 \ 2 \ 0 \ 0 \ 0 \ 0 \ 1] \ \dots \ x(s_6) = [0 \ 0 \ 0 \ 0 \ 0 \ 2 \ 0 \ 1]$  $x(s_7) = [0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 2] \ r(s) = 0 \ \forall s \qquad 2 \text{ actions } a_1 \text{ solid line, } a_2 \text{ dotted}$
- Small prob s<sub>7</sub> goes to terminal state s<sub>T</sub>
- Consider tuple (*s*<sub>1</sub>, *a*<sub>1</sub>, 0, *s*<sub>7</sub>).
- Let  $w_0 = [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1]$ . TD update:  $\Delta w = \alpha (r + \gamma x (s')^T w x(s)^T w) x(s)$

<sup>1</sup>Figure from Sutton and Barto 2018

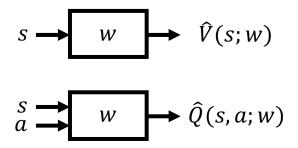
Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Value Function Approximation

- MC VFA
- Temporal Difference (TD(0)) Learning with Value Function Approximation

# Control using Value Function Approximation Deep Q Learning

- Use value function approximation to represent state-action values  $\hat{Q}^{\pi}(s,a;m{w})pprox Q^{\pi}$
- Interleave
  - Approximate policy evaluation using value function approximation
  - Perform  $\epsilon$ -greedy policy improvement
- Can be unstable. Generally involves intersection of the following:
  - Function approximation
  - Bootstrapping
  - Off-policy learning

• Represent state-action value function by Q-network with weights  $m{w}$  $\hat{Q}(s,a;m{w})pprox Q(s,a)$ 



#### Action-Value Function Approximation with an Oracle

• 
$$\hat{Q}^{\pi}(s,a;oldsymbol{w})pprox Q^{\pi}$$

• Minimize the mean-squared error between the true action-value function  $Q^{\pi}(s, a)$  and the approximate action-value function:

$$J(oldsymbol{w}) = \mathbb{E}_{\pi}[(Q^{\pi}(s, a) - \hat{Q}^{\pi}(s, a; oldsymbol{w}))^2]$$

• Use stochastic gradient descent to find a local minimum

$$\begin{aligned} \Delta(\boldsymbol{w}) &= \alpha \nabla_{\boldsymbol{w}} J(\boldsymbol{w}) \\ &= \alpha \mathbb{E} \left[ (Q^{\pi}(s, a) - \hat{Q}^{\pi}(s, a; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}^{\pi}(s, a; \boldsymbol{w}) \right] \end{aligned}$$

Stochastic gradient descent (SGD) samples the gradient

#### Check Your Understanding L5N2: Predict Control Updates

 The weight update for control for MC and TD-style methods will be near identical to the policy evaluation steps. Try to see if you can match the right weight update equations for the different methods: SARSA control update, Q-learning control update and MC control update.

$$\Delta \boldsymbol{w} = \alpha(r + \gamma \hat{Q}(s', a'; \boldsymbol{w}) - \hat{Q}(s, a; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}(s, a; \boldsymbol{w})(1)$$
  

$$\Delta \boldsymbol{w} = \alpha(G_t + \gamma \hat{Q}(s', a'; \boldsymbol{w}) - \hat{Q}(s, a; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}(s, a; \boldsymbol{w})(2)$$
  

$$\Delta \boldsymbol{w} = \alpha(r + \gamma \max_{a'} \hat{Q}(s', a'; \boldsymbol{w}) - \hat{Q}(s, a; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}(s, a; \boldsymbol{w})(3)$$
  

$$\Delta \boldsymbol{w} = \alpha(G_t - \hat{Q}(s_t, a_t; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}(s_t, a_t; \boldsymbol{w})(4)$$
  

$$\Delta \boldsymbol{w} = \alpha(r + \gamma \max_{s'} \hat{Q}(s', a; \boldsymbol{w}) - \hat{Q}(s, a; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}(s, a; \boldsymbol{w})(5)$$

• The weight update for control for MC and TD-style methods will be near identical to the policy evaluation steps. Try to see if you can predict which are the right weight update equations for the different methods.

# Linear State Action Value Function Approximation with an Oracle

Use features to represent both the state and action

$$m{x}(s,a) = \left(egin{array}{c} x_1(s,a) \ x_2(s,a) \ \dots \ x_n(s,a) \end{array}
ight)$$

Represent state-action value function with a weighted linear combination of features

$$\hat{Q}(s,a; \boldsymbol{w}) = \boldsymbol{x}(s,a)^T \boldsymbol{w} = \sum_{j=1}^n x_j(s,a) w_j$$

Stochastic gradient descent update:

$$abla_{oldsymbol{w}} J(oldsymbol{w}) = 
abla_{oldsymbol{w}} \mathbb{E}_{\pi}[(Q^{\pi}(s, a) - \hat{Q}^{\pi}(s, a; oldsymbol{w}))^2]$$

#### Incremental Model-Free Control Approaches

- Similar to policy evaluation, true state-action value function for a state is unknown and so substitute a target value
- In Monte Carlo methods, use a return  $G_t$  as a substitute target

$$\Delta \boldsymbol{w} = lpha (\boldsymbol{G}_t - \hat{Q}(\boldsymbol{s}_t, \boldsymbol{a}_t; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}(\boldsymbol{s}_t, \boldsymbol{a}_t; \boldsymbol{w})$$

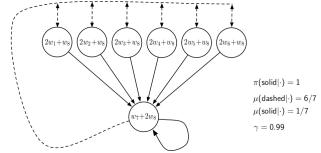
 For SARSA instead use a TD target r + γ Q̂(s', a'; w) which leverages the current function approximation value

$$\Delta oldsymbol{w} = lpha(oldsymbol{r}+\gamma \hat{Q}(oldsymbol{s}',oldsymbol{a}';oldsymbol{w}) - \hat{Q}(oldsymbol{s},oldsymbol{a};oldsymbol{w}))
abla_{oldsymbol{w}} \hat{Q}(oldsymbol{s},oldsymbol{a};oldsymbol{w}))
abla_{oldsymbol{w}} \hat{Q}(oldsymbol{s},oldsymbol{a};oldsymbol{w}))$$

 For Q-learning instead use a TD target r + γ max<sub>a</sub>, Q̂(s', a'; w) which leverages the max of the current function approximation value

$$\Delta \boldsymbol{w} = \alpha (r + \gamma \max_{\boldsymbol{a}'} \hat{Q}(\boldsymbol{s}', \boldsymbol{a}'; \boldsymbol{w}) - \hat{Q}(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w})$$

### Challenges of Off Policy Control: Baird Example <sup>1</sup>



- Behavior policy and target policy are not identical
- Value can diverge

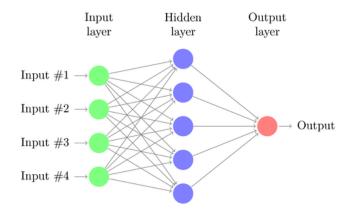
A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A

# In TD learning with linear VFA (select all): w = w + α(r(s<sub>t</sub>) + γx(s<sub>t+1</sub>)<sup>T</sup>w - x(s<sub>t</sub>)<sup>T</sup>w)x(s<sub>t</sub>) V(s) = w(s)x(s) Not sure

- MC VFA
- Temporal Difference (TD(0)) Learning with Value Function Approximation

# Deep learning for Value Function Approximation Deep Q Learning

- Linear value function approximators assume value function is a weighted combination of a set of features, where each feature a function of the state
- Linear VFA often work well given the right set of features
- But can require carefully hand designing that feature set
- An alternative is to use a much richer function approximation class that is able to directly go from states without requiring an explicit specification of features
- Local representations including Kernel based approaches have some appealing properties (including convergence results under certain cases) but can't typically scale well to enormous spaces and datasets



<sup>3</sup>Figure by Kjell Magne Fauske

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Value Function Approximation

• • • • • • • • • • • •

- Uses distributed representations instead of local representations
- Universal function approximator
- Can potentially need exponentially less nodes/parameters (compared to a shallow net) to represent the same function
- Can learn the parameters using stochastic gradient descent

- MC VFA
- Temporal Difference (TD(0)) Learning with Value Function Approximation

Deep learning for Value Function Approximation
 Deep Q Learning

## Deep Reinforcement Learning

- Use deep neural networks to represent
  - Value, Q function
  - Policy
  - Model
- Optimize loss function by stochastic gradient descent (SGD)



#### Model-Free Control with General Function Approximators

- Similar to policy evaluation, true state-action value function for a state is unknown and so substitute a target value
- Similar to linear value function approximation, but gradient with respect to complex function
- Monte Carlo: use return  $G_t$  as target

$$\Delta \boldsymbol{w} = lpha (G_t - \hat{Q}(s_t, a_t; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}(s_t, a_t; \boldsymbol{w})$$

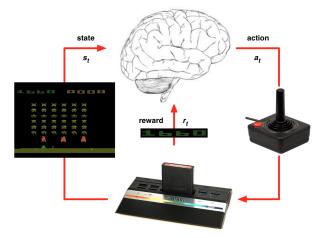
• SARSA: use a TD target  $r + \gamma \hat{Q}(s_{t+1}, a_{t+1}; w)$ , with current function approximation value

$$\Delta \boldsymbol{w} = \alpha(\boldsymbol{r} + \gamma \hat{Q}(\boldsymbol{s}_{t+1}, \boldsymbol{a}_{t+1}; \boldsymbol{w}) - \hat{Q}(\boldsymbol{s}_t, \boldsymbol{a}_t; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}(\boldsymbol{s}_t, \boldsymbol{a}_t; \boldsymbol{w})$$

For Q-learning

$$\Delta \boldsymbol{w} = \alpha(r + \gamma \max_{a} \hat{Q}(s_{t+1}, a; \boldsymbol{w}) - \hat{Q}(s_t, a_t; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}(s_t, a_t; \boldsymbol{w})$$

#### Using these ideas to do Deep RL in Atari



# Q-Learning with Value Function Approximation

- Q-learning converges to the optimal  $Q^*(s, a)$  using table lookup representation
- In value function approximation Q-learning we can minimize MSE loss by stochastic gradient descent using a target Q estimate instead of true Q (as we saw with linear VFA)
- But Q-learning with VFA can diverge
- Two of the issues causing problems:
  - Correlations between samples
  - Non-stationary targets
- Deep Q-learning (DQN) addresses these challenges by
  - Experience replay
  - Fixed Q-targets

## DQNs: Experience Replay

• To help remove correlations, store dataset (called a **replay buffer**)  $\mathcal{D}$  from prior experience

$$\frac{s_{1}, a_{1}, r_{2}, s_{2}}{s_{2}, a_{2}, r_{3}, s_{3}} \rightarrow s, a, r, s' \\
\frac{s_{3}, a_{3}, r_{4}, s_{4}}{\dots} \\
\frac{s_{t}, a_{t}, r_{t+1}, s_{t+1}}{s_{t+1}}$$

- To perform experience replay, repeat the following:
  - $(s, a, r, s') \sim \mathcal{D}$ : sample an experience tuple from the dataset
  - Compute the target value for the sampled s:  $r + \gamma \max_{a'} \hat{Q}(s', a'; w)$
  - Use stochastic gradient descent to update the network weights

$$\Delta \boldsymbol{w} = \alpha(\boldsymbol{r} + \gamma \max_{\boldsymbol{a}'} \hat{Q}(\boldsymbol{s}', \boldsymbol{a}'; \boldsymbol{w}) - \hat{Q}(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w})$$

## DQNs: Experience Replay

• To help remove correlations, store dataset  ${\cal D}$  from prior experience

$$\frac{\begin{array}{c}
s_{1}, a_{1}, r_{2}, s_{2} \\
s_{2}, a_{2}, r_{3}, s_{3} \\
s_{3}, a_{3}, r_{4}, s_{4} \\
\dots \\
s_{t}, a_{t}, r_{t+1}, s_{t+1}
\end{array}} \rightarrow s, a, r, s'$$

- To perform experience replay, repeat the following:
  - $(s, a, r, s') \sim \mathcal{D}$ : sample an experience tuple from the dataset
  - Compute the target value for the sampled s:  $r + \gamma \max_{a'} \hat{Q}(s', a'; w)$
  - Use stochastic gradient descent to update the network weights

$$\Delta \boldsymbol{w} = \alpha(\boldsymbol{r} + \gamma \max_{\boldsymbol{a}'} \hat{Q}(\boldsymbol{s}', \boldsymbol{a}'; \boldsymbol{w}) - \hat{Q}(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w})$$

• Uses target as a scalar, but function weights will get updated on the next round, changing the target value

- To help improve stability, fix the **target weights** used in the target calculation for multiple updates
- Target network uses a different set of weights than the weights being updated
- Let parameters w<sup>-</sup> be the set of weights used in the target, and w be the weights that are being updated
- Slight change to computation of target value:
  - $(s, a, r, s') \sim \mathcal{D}$ : sample an experience tuple from the dataset
  - Compute the target value for the sampled s:  $r + \gamma \max_{a'} \hat{Q}(s', a'; w^{-})$
  - Use stochastic gradient descent to update the network weights

$$\Delta \boldsymbol{w} = \alpha(\boldsymbol{r} + \gamma \max_{\boldsymbol{a}'} \hat{Q}(\boldsymbol{s}', \boldsymbol{a}'; \boldsymbol{w}^{-}) - \hat{Q}(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}(\boldsymbol{s}, \boldsymbol{a}; \boldsymbol{w})$$

### **DQN** Pseudocode

```
1: Input \boldsymbol{C}, \boldsymbol{\alpha}, D = \{\}, Initialize \boldsymbol{w}, \boldsymbol{w}^{-} = \boldsymbol{w}, t = 0
1: Input C, \alpha, \nu = \gamma

2: Get initial state s_0

3: Ioop

4: Sample action

5: Observe reward

6: Store transition

7: Sample randor

8: for j in miniba

9: if episode

10: y_i = \gamma_i
                Sample action a_t given \epsilon-greedy policy for current \hat{Q}(s_t, a; w)
                Observe reward r_t and next state s_{t+1}
                Store transition (s_t, a_t, r_t, s_{t+1}) in replay buffer D
                Sample random minibatch of tuples (s_i, a_i, r_i, s_{i+1}) from D
                for i in minibatch do
                       if episode terminated at step i + 1 then
                                 v_i = r_i
 11:
12:
                         else
                                y_i = r_i + \gamma \max_{\gamma'} \hat{Q}(s_{i+1}, a'; w^-)
 13:
14:
                         end if
                         Do gradient descent step on (y_i - \hat{Q}(s_i, a_i; \boldsymbol{w}))^2 for parameters \boldsymbol{w}: \Delta \boldsymbol{w} = \alpha(y_i - \hat{Q}(s_i, a_i; \boldsymbol{w})) \nabla_{\boldsymbol{w}} \hat{Q}(s_i, a_i; \boldsymbol{w})
 15:
16:
17:
                  end for
                  t = t + 1
                  if mod(t,C) == 0 then
  18:
19:
                  end if
  20: end loop
```

Note there are several hyperparameters and algorithm choices. One needs to choose the neural network architecture, the learning rate, and how often to update the target network. Often a fixed size replay buffer is used for experience replay, which introduces a parameter to control the size, and the need to decide how to populate it.

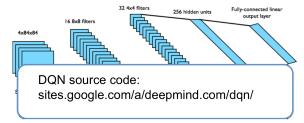
- In DQN we compute the target value for the sampled (s, a, r, s) using a separate set of target weights: r + γ max<sub>a</sub>, Q̂(s', a'; w<sup>-</sup>)
- Select all that are true
- This doubles the computation time compared to a method that does not have a separate set of weights
- This doubles the memory requirements compared to a method that does not have a separate set of weights
- Not sure

#### Check Your Understanding: Fixed Targets Solutions

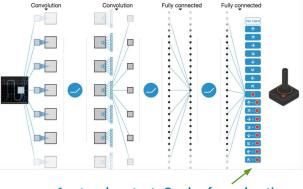
- In DQN we compute the target value for the sampled (s, a, r, s') using a separate set of target weights: r + γ max<sub>a'</sub> Q̂(s', a'; w<sup>-</sup>)
- Select all that are true
- This doubles the computation time compared to a method that does not have a separate set of weights
- This doubles the memory requirements compared to a method that does not have a separate set of weights
- Not sure

- DQN uses experience replay and fixed Q-targets
- Store transition  $(s_t, a_t, r_{t+1}, s_{t+1})$  in replay memory  $\mathcal{D}$
- Sample random mini-batch of transitions (s, a, r, s') from  $\mathcal{D}$
- Compute Q-learning targets w.r.t. old, fixed parameters  $w^-$
- Optimizes MSE between Q-network and Q-learning targets
- Uses stochastic gradient descent

- End-to-end learning of values Q(s, a) from pixels s
- Input state s is stack of raw pixels from last 4 frames
- Output is Q(s, a) for 18 joystick/button positions
- Reward is change in score for that step



Network architecture and hyperparameters fixed across all games



1 network, outputs Q value for each action

Figure: Human-level control through deep reinforcement learning, Mnih et al, 2015

#### DQN Results in Atari

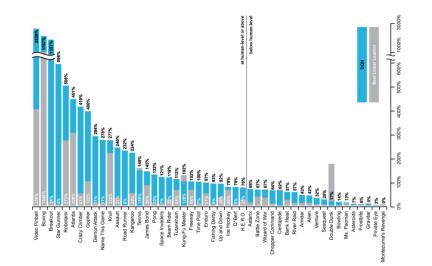


Figure: Human-level control through deep reinforcement learning, Mnih et al, 2015

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Value Function Approximation

# Which Aspects of DQN were Important for Success?

| Game       | Linear | Deep    |
|------------|--------|---------|
| Game       | Linear | Network |
| Breakout   | 3      | 3       |
| Enduro     | 62     | 29      |
| River Raid | 2345   | 1453    |
| Seaquest   | 656    | 275     |
| Space      | 301    | 302     |
| Invaders   | 501    | 502     |

Note: just using a deep NN actually hurt performance sometimes!

| Game       | Linear | Deep    | DQN w/  |
|------------|--------|---------|---------|
| Game       | Linear | Network | fixed Q |
| Breakout   | 3      | 3       | 10      |
| Enduro     | 62     | 29      | 141     |
| River Raid | 2345   | 1453    | 2868    |
| Seaquest   | 656    | 275     | 1003    |
| Space      | 301    | 302     | 373     |
| Invaders   |        |         |         |

| Game Linear | Deep   | DQN w/  | DQN w/  | DQN w/replay |             |
|-------------|--------|---------|---------|--------------|-------------|
|             | Linear | Network | fixed Q | replay       | and fixed Q |
| Breakout    | 3      | 3       | 10      | 241          | 317         |
| Enduro      | 62     | 29      | 141     | 831          | 1006        |
| River Raid  | 2345   | 1453    | 2868    | 4102         | 7447        |
| Seaquest    | 656    | 275     | 1003    | 823          | 2894        |
| Space       | 301    | 302     | 373     | 826          | 1089        |
| Invaders    | 301    | 302     | 575     | 020          | 1009        |

- Replay is **hugely** important
- Why? Beyond helping with correlation between samples, what does replaying do?

- Success in Atari has led to huge excitement in using deep neural networks to do value function approximation in RL
- Some immediate improvements (many others!)
  - **Double DQN** (Deep Reinforcement Learning with Double Q-Learning, Van Hasselt et al, AAAI 2016)
  - Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR 2016)
  - Dueling DQN (best paper ICML 2016) (Dueling Network Architectures for Deep Reinforcement Learning, Wang et al, ICML 2016)

- Be able to implement TD(0) and MC on policy evaluation with linear value function approximation
- Be able to implement Q-learning and SARSA and MC control algorithms
- List the 3 issues that can cause instability and describe the problems qualitatively: function approximation, bootstrapping and off policy learning
- Be able to implement DQN and know some of the key features that were critical (experience replay, fixed targets)

- Last time and start of this time: Model-free reinforcement learning with function approximation
- Next time: Deep RL continued

#### Batch Monte Carlo Value Function Approximation

- $\bullet\,$  May have a set of episodes from a policy  $\pi\,$
- Can analytically solve for the best linear approximation that minimizes mean squared error on this data set
- Let  $G(s_i)$  be an unbiased sample of the true expected return  $V^{\pi}(s_i)$

$$rgmin_{oldsymbol{w}} \sum_{i=1}^N (G(s_i) - oldsymbol{x}(s_i)^T oldsymbol{w})^2$$

• Take the derivative and set to 0

$$\boldsymbol{w} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{G}$$

- where G is a vector of all N returns, and X is a matrix of the features of each of the N states x(s<sub>i</sub>)
- Note: not making any Markov assumptions

#### For next class

Emma Brunskill (CS234 Reinforcement Learn Lecture 5: Value Function Approximation

イロト イヨト イヨト イヨト

# Convergence Guarantees for TD Linear VFA for Policy Evaluation: Preliminaries

- For infinite horizon, the Markov Chain defined by a MDP with a particular policy will eventually converge to a probability distribution over states *d*(*s*)
- d(s) is called the stationary distribution over states of  $\pi$
- $\sum_s d(s) = 1$
- d(s) satisfies the following balance equation:

$$d(s') = \sum_{s} \sum_{a} \pi(a|s) p(s'|s, a) d(s)$$

# Convergence Guarantees for Linear Value Function Approximation for Policy Evaluation

• Define the mean squared error of a linear value function approximation for a particular policy  $\pi$  relative to the true value given the distribution d as

$$\mathit{MSVE}_d({m w}) = \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; {m w}))^2$$

- where
  - d(s): stationary distribution of  $\pi$  in the true decision process
  - $\hat{V}^{\pi}(s; \boldsymbol{w}) = \boldsymbol{x}(s)^{T} \boldsymbol{w}$ , a linear value function approximation
- TD(0) policy evaluation with VFA converges to weights *w<sub>TD</sub>* which is within a constant factor of the min mean squared error possible given distribution *d*:

$$MSVE_d(\mathbf{w}_{TD}) \leq rac{1}{1-\gamma} \min_{\mathbf{w}} \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \mathbf{w}))^2$$

#### Check Your Understanding L5N1: Poll

 TD(0) policy evaluation with VFA converges to weights *w<sub>TD</sub>* which is within a constant factor of the min mean squared error possible for distribution *d*:

$$MSVE_d(\boldsymbol{w}_{TD}) \leq rac{1}{1-\gamma} \min_{\boldsymbol{w}} \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \boldsymbol{w}))^2$$

- If the VFA is a tabular representation (one feature for each state), what is the *MSVE*<sub>d</sub> for TD?
- Depends on the problem
- MSVE = 0 for TD

 TD(0) policy evaluation with VFA converges to weights *w<sub>TD</sub>* which is within a constant factor of the min mean squared error possible for distribution *d*:

$$MSVE_d(\boldsymbol{w}_{TD}) \leq rac{1}{1-\gamma} \min_{\boldsymbol{w}} \sum_{s \in S} d(s) (V^{\pi}(s) - \hat{V}^{\pi}(s; \boldsymbol{w}))^2$$

• If the VFA is a tabular representation (one feature for each state), what is the *MSVE*<sub>d</sub> for TD?

- Informally, updates involve doing an (approximate) Bellman backup followed by best trying to fit underlying value function to a particular feature representation
- Bellman operators are contractions, but value function approximation fitting can be an expansion

#### Convergence of Control Methods with VFA

| Algorithm           | Tabular | Linear VFA |
|---------------------|---------|------------|
| Monte-Carlo Control |         |            |
| Sarsa               |         |            |
| Q-learning          |         |            |