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The value function approximation structure for today closely follows much
of David Silver’s Lecture 6.
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L5 Refresh Your Knowledge

In tabular MDPs, if using a decision policy that visits all states an infinite number of times, and in each state randomly

selects an action, then (select all)

1 Q-learning will converge to the optimal Q-values
2 SARSA will converge to the optimal Q-values
3 Q-learning is learning off-policy
4 SARSA is learning off-policy
5 Not sure

A TD error > 0 can occur even if the current V (s) is correct ∀s: [select all]

1 False
2 True if the MDP has stochastic state transitions
3 True if the MDP has deterministic state transitions
4 Not sure
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A note on Monte Carlo vs TD estimates

Policy evaluation: V̂ π ← (1− α)V̂ π + αVtarget

MC: Vtarget(st) = Gt (sum of discounted returns until the episode
terminates)

Target is unbiased estimate of V π

Target can be high variance

TD(0): Vtarget(st) = rt + γV̂ (s ′)

Target is a biased estimate of V π

Target is lower variance

Which one should we use? Is there other alternatives?
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n-step TD estimates

Policy evaluation: V̂ π ← (1− α)V̂ π + αVtarget

MC: Vtarget(st) = Gt (sum of discounted returns until the episode
terminates)

Target is unbiased estimate of V π

Target can be high variance

TD(0): Vtarget(st) = rt + γV̂ (s ′)

Target is a biased estimate of V π

Target is lower variance

Best of both worlds?

n-step TD: Vtarget(st) = rt + γrt+1 + γrt+2 + ...γnV̂ (st+n)
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Performance of n-step TD methods as a function of α

1

19 state random walk task.

1Figure 7.2 from Sutton and Barto 2018
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Feature Vectors

Use a feature vector to represent a state s

x(s) =


x1(s)
x2(s)
. . .
xn(s)
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Recall: Linear Value Function Approximation for Prediction
With An Oracle

Represent a value function (or state-action value function) for a
particular policy with a weighted linear combination of features

V̂ (s; w) =
n∑

j=1

xj(s)wj = x(s)Tw

Objective function is

J(w) = Eπ[(V π(s)− V̂ (s; w))2]

Recall weight update is

∆w = −1

2
α∇wJ(w)

Update is: ∆w = −1
2α(V π(s)− x(s)Tw)x

Update = step-size × prediction error × feature value
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Recall: Monte Carlo Value Function Approximation

Return Gt is an unbiased but noisy sample of the true expected return
V π(st)

Therefore can reduce MC VFA to doing supervised learning on a set
of (state,return) pairs: 〈s1,G1〉, 〈s2,G2〉, . . . , 〈sT ,GT 〉

Substitute Gt for the true V π(st) when fit function approximator

Concretely when using linear VFA for policy evaluation

∆w = α(Gt − V̂ (st ; w))∇w V̂ (st ; w)

= α(Gt − V̂ (st ; w))x(st)

= α(Gt − x(st)
Tw)x(st)

Note: Gt may be a very noisy estimate of true return
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MC Linear Value Function Approximation for Policy
Evaluation

1: Initialize w = 0, k = 1
2: loop
3: Sample k-th episode (sk,1, ak,1, rk,1, sk,2, . . . , sk,Lk ) given π
4: for t = 1, . . . , Lk do
5: if First visit to (s) in episode k then
6: Gt(s) =

∑Lk
j=t rk,j

7: Update weights: ∆w = α(Gt − x(st)
Tw)x(st)

8: end if
9: end for

10: k = k + 1
11: end loop
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Baird (1995)-Like Example with MC Policy Evaluation2

x(s1) = [2 0 0 0 0 0 0 1] x(s2) = [0 2 0 0 0 0 0 1] . . . x(s6) = [0 0 0 0 0 2 0 1]
x(s7)= [0 0 0 0 0 0 1 2] r(s) = 0 ∀s 2 actions a1 solid line, a2 dotted

Small prob s7 goes to terminal state sT

Consider trajectory (s1, a1, 0, s7, a1, 0, s7, a1, 0, sT ). G(s1) = 0

Let w0 =[1 1 1 1 1 1 1 1]. MC update: ∆w = α(Gt − x(st)
Tw)x(st)

2Figure from Sutton and Barto 2018
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Temporal Difference (TD(0)) Learning with Value
Function Approximation

Uses bootstrapping and sampling to approximate true V π

Updates estimate V π(s) after each transition (s, a, r , s ′):

V π(s) = V π(s) + α(r + γV π(s ′)− V π(s))

Target is r + γV π(s ′)

In value function approximation, target is r + γV̂ π(s ′; w)

3 forms of approximation:
1 Sampling
2 Bootstrapping
3 Value function approximation

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 5: Value Function Approximation Winter 2023 16 / 66



Temporal Difference (TD(0)) Learning with Value
Function Approximation

In value function approximation, target is r + γV̂ π(s ′; w), a biased
and approximated estimate of the true value V π(s)

Can reduce doing TD(0) learning with value function approximation
to supervised learning on a set of data pairs:

〈s1, r1 + γV̂ π(s2; w)〉, 〈s2, r2 + γV̂ (s3; w)〉, . . .
Find weights to minimize mean squared error

J(w) = Eπ[(rj + γV̂ π(sj+1,w)− V̂ (sj ; w))2]
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Temporal Difference (TD(0)) Learning with Value
Function Approximation

In value function approximation, target is r + γV̂ π(s ′; w), a biased
and approximated estimate of the true value V π(s)

Supervised learning on a different set of data pairs:
〈s1, r1 + γV̂ π(s2; w)〉, 〈s2, r2 + γV̂ (s3; w)〉, . . .
In linear TD(0)

∆w = α(r + γV̂ π(s ′; w)− V̂ π(s; w))∇w V̂
π(s; w)

= α(r + γV̂ π(s ′; w)− V̂ π(s; w))x(s)

= α(r + γx(s ′)Tw − x(s)Tw)x(s)

Note: we treat V̂ π(s ′; w) in target as a scalar (it is a function of w
but weight update ignores that)
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TD(0) Linear Value Function Approximation for Policy
Evaluation

1: Initialize w = 0, k = 1
2: loop
3: Sample tuple (sk , ak , rk , sk+1) given π
4: Update weights:

w = w + α(r + γx(s ′)Tw − x(s)Tw)x(s)

5: k = k + 1
6: end loop
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Baird Example with TD(0) On Policy Evaluation 1

x(s1) = [2 0 0 0 0 0 0 1] x(s2) = [0 2 0 0 0 0 0 1] . . . x(s6) = [0 0 0 0 0 2 0 1]
x(s7)= [0 0 0 0 0 0 1 2] r(s) = 0 ∀s 2 actions a1 solid line, a2 dotted

Small prob s7 goes to terminal state sT

Consider tuple (s1, a1, 0, s7).

Let w0 =[1 1 1 1 1 1 1 1]. TD update: ∆w = α(r + γx(s ′)Tw − x(s)Tw)x(s)

1Figure from Sutton and Barto 2018
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Control using Value Function Approximation

Use value function approximation to represent state-action values
Q̂π(s, a; w) ≈ Qπ

Interleave

Approximate policy evaluation using value function approximation
Perform ε-greedy policy improvement

Can be unstable. Generally involves intersection of the following:

Function approximation
Bootstrapping
Off-policy learning
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Control with VFA

Represent state-action value function by Q-network with weights w
Q̂(s, a; w) ≈ Q(s, a)

𝑠 𝑉#(𝑠;𝑤)𝑤

𝑠 𝑄#(𝑠, 𝑎; 𝑤)𝑤𝑎
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Action-Value Function Approximation with an Oracle

Q̂π(s, a; w) ≈ Qπ

Minimize the mean-squared error between the true action-value
function Qπ(s, a) and the approximate action-value function:

J(w) = Eπ[(Qπ(s, a)− Q̂π(s, a; w))2]

Use stochastic gradient descent to find a local minimum

∆(w) = α∇wJ(w)

= αE
[
(Qπ(s, a)− Q̂π(s, a; w))∇w Q̂

π(s, a; w)
]

Stochastic gradient descent (SGD) samples the gradient
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Check Your Understanding L5N2: Predict Control Updates

The weight update for control for MC and TD-style methods will be
near identical to the policy evaluation steps. Try to see if you can
match the right weight update equations for the different methods:
SARSA control update, Q-learning control update and MC control
update.

∆w = α(r + γQ̂(s ′, a′; w)− Q̂(s, a; w))∇w Q̂(s, a; w)(1)

∆w = α(Gt + γQ̂(s ′, a′; w)− Q̂(s, a; w))∇w Q̂(s, a; w)(2)

∆w = α(r + γmax
a′

Q̂(s ′, a′; w)− Q̂(s, a; w))∇w Q̂(s, a; w)(3)

∆w = α(Gt − Q̂(st , at ; w))∇w Q̂(st , at ; w)(4)

∆w = α(r + γmax
s′

Q̂(s ′, a; w)− Q̂(s, a; w))∇w Q̂(s, a; w)(5)
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Check Your Understanding L5N2: Answers

The weight update for control for MC and TD-style methods will be
near identical to the policy evaluation steps. Try to see if you can
predict which are the right weight update equations for the different
methods.
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Linear State Action Value Function Approximation with an
Oracle

Use features to represent both the state and action

x(s, a) =


x1(s, a)
x2(s, a)
. . .

xn(s, a)


Represent state-action value function with a weighted linear
combination of features

Q̂(s, a; w) = x(s, a)Tw =
n∑

j=1

xj(s, a)wj

Stochastic gradient descent update:

∇wJ(w) = ∇wEπ[(Qπ(s, a)− Q̂π(s, a; w))2]
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Incremental Model-Free Control Approaches

Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

In Monte Carlo methods, use a return Gt as a substitute target

∆w = α(Gt − Q̂(st , at ; w))∇w Q̂(st , at ; w)

For SARSA instead use a TD target r + γQ̂(s ′, a′; w) which leverages
the current function approximation value

∆w = α(r + γQ̂(s ′, a′; w)− Q̂(s, a; w))∇w Q̂(s, a; w)

For Q-learning instead use a TD target r + γmaxa′ Q̂(s ′, a′; w) which
leverages the max of the current function approximation value

∆w = α(r + γmax
a′

Q̂(s ′, a′; w)− Q̂(s, a; w))∇w Q̂(s, a; w)
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Challenges of Off Policy Control: Baird Example 1

Behavior policy and target policy are not identical
Value can diverge

1Figure from Sutton and Barto 2018
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Check Your Knowledge

In TD learning with linear VFA (select all):
1 w = w + α(r(st) + γx(st+1)Tw − x(st)

Tw)x(st)
2 V (s) = w(s)x(s)
3 Not sure
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Check Your Knowledge Solutions

In TD learning with linear VFA (select all):
1 w = w + α(r(st) + γx(st+1)Tw − x(st)

Tw)x(st)
2 V (s) = w(s)x(s)
3 Not sure
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RL with Function Approximation

Linear value function approximators assume value function is a
weighted combination of a set of features, where each feature a
function of the state

Linear VFA often work well given the right set of features

But can require carefully hand designing that feature set

An alternative is to use a much richer function approximation class
that is able to directly go from states without requiring an explicit
specification of features

Local representations including Kernel based approaches have some
appealing properties (including convergence results under certain
cases) but can’t typically scale well to enormous spaces and datasets
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Neural Networks 3

3Figure by Kjell Magne Fauske
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The Benefit of Deep Neural Network Approximators

Uses distributed representations instead of local representations

Universal function approximator

Can potentially need exponentially less nodes/parameters (compared
to a shallow net) to represent the same function

Can learn the parameters using stochastic gradient descent
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Deep Reinforcement Learning

Use deep neural networks to represent

Value, Q function
Policy
Model

Optimize loss function by stochastic gradient descent (SGD)
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Model-Free Control with General Function Approximators

Similar to policy evaluation, true state-action value function for a
state is unknown and so substitute a target value

Similar to linear value function approximation, but gradient with
respect to complex function

Monte Carlo: use return Gt as target

∆w = α(Gt − Q̂(st , at ; w))∇w Q̂(st , at ; w)

SARSA: use a TD target r + γQ̂(st+1, at+1; w), with current function
approximation value

∆w = α(r + γQ̂(st+1, at+1; w)− Q̂(st , at ; w))∇w Q̂(st , at ; w)

For Q-learning

∆w = α(r + γmax
a

Q̂(st+1, a; w)− Q̂(st , at ; w))∇w Q̂(st , at ; w)
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Using these ideas to do Deep RL in Atari
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Q-Learning with Value Function Approximation

Q-learning converges to the optimal Q∗(s, a) using table lookup
representation

In value function approximation Q-learning we can minimize MSE loss
by stochastic gradient descent using a target Q estimate instead of
true Q (as we saw with linear VFA)

But Q-learning with VFA can diverge

Two of the issues causing problems:

Correlations between samples
Non-stationary targets

Deep Q-learning (DQN) addresses these challenges by

Experience replay
Fixed Q-targets
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DQNs: Experience Replay

To help remove correlations, store dataset (called a replay buffer) D
from prior experience

To perform experience replay, repeat the following:

(s, a, r , s ′) ∼ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + γmaxa′ Q̂(s ′, a′; w)
Use stochastic gradient descent to update the network weights

∆w = α(r + γmax
a′

Q̂(s ′, a′; w)− Q̂(s, a; w))∇w Q̂(s, a; w)
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DQNs: Experience Replay

To help remove correlations, store dataset D from prior experience

To perform experience replay, repeat the following:

(s, a, r , s ′) ∼ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + γmaxa′ Q̂(s ′, a′; w)
Use stochastic gradient descent to update the network weights

∆w = α(r + γmax
a′

Q̂(s ′, a′; w)− Q̂(s, a; w))∇w Q̂(s, a; w)

Uses target as a scalar, but function weights will get updated
on the next round, changing the target value
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DQNs: Fixed Q-Targets

To help improve stability, fix the target weights used in the target
calculation for multiple updates

Target network uses a different set of weights than the weights being
updated

Let parameters w− be the set of weights used in the target, and w
be the weights that are being updated

Slight change to computation of target value:

(s, a, r , s ′) ∼ D: sample an experience tuple from the dataset
Compute the target value for the sampled s: r + γmaxa′ Q̂(s ′, a′; w−)
Use stochastic gradient descent to update the network weights

∆w = α(r + γmax
a′

Q̂(s ′, a′; w−)− Q̂(s, a; w))∇w Q̂(s, a; w)
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DQN Pseudocode

1: Input C , α, D = {}, Initialize w , w− = w , t = 0

2: Get initial state s0

3: loop

4: Sample action at given ε-greedy policy for current Q̂(st , a; w)

5: Observe reward rt and next state st+1

6: Store transition (st , at , rt , st+1) in replay buffer D

7: Sample random minibatch of tuples (si , ai , ri , si+1) from D

8: for j in minibatch do

9: if episode terminated at step i + 1 then

10: yi = ri
11: else
12: yi = ri + γ maxa′ Q̂(si+1, a

′; w−)

13: end if
14: Do gradient descent step on (yi − Q̂(si , ai ; w))2 for parameters w : ∆w = α(yi − Q̂(si , ai ; w))∇w Q̂(si , ai ; w)

15: end for
16: t = t + 1
17: if mod(t,C) == 0 then

18: w− ← w
19: end if
20: end loop

Note there are several hyperparameters and algorithm choices. One needs to choose the neural network architecture, the

learning rate, and how often to update the target network. Often a fixed size replay buffer is used for experience replay, which

introduces a parameter to control the size, and the need to decide how to populate it.
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Check Your Understanding: Fixed Targets

In DQN we compute the target value for the sampled (s, a, r , s) using
a separate set of target weights: r + γmaxa′ Q̂(s ′, a′; w−)

Select all that are true

This doubles the computation time compared to a method that does
not have a separate set of weights

This doubles the memory requirements compared to a method that
does not have a separate set of weights

Not sure
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Check Your Understanding: Fixed Targets Solutions

In DQN we compute the target value for the sampled (s, a, r , s ′) using
a separate set of target weights: r + γmaxa′ Q̂(s ′, a′; w−)

Select all that are true

This doubles the computation time compared to a method that does
not have a separate set of weights

This doubles the memory requirements compared to a method that
does not have a separate set of weights

Not sure
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DQNs Summary

DQN uses experience replay and fixed Q-targets

Store transition (st , at , rt+1, st+1) in replay memory D
Sample random mini-batch of transitions (s, a, r , s ′) from D
Compute Q-learning targets w.r.t. old, fixed parameters w−

Optimizes MSE between Q-network and Q-learning targets

Uses stochastic gradient descent

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 5: Value Function Approximation Winter 2023 48 / 66



DQNs in Atari

End-to-end learning of values Q(s, a) from pixels s

Input state s is stack of raw pixels from last 4 frames

Output is Q(s, a) for 18 joystick/button positions

Reward is change in score for that step

Network architecture and hyperparameters fixed across all games
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DQN

Figure: Human-level control through deep reinforcement learning, Mnih et al,
2015
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DQN Results in Atari

Figure: Human-level control through deep reinforcement learning, Mnih et al,
2015
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Which Aspects of DQN were Important for Success?

Game Linear
Deep

Network

Breakout 3 3

Enduro 62 29

River Raid 2345 1453

Seaquest 656 275

Space
Invaders

301 302

Note: just using a deep NN actually hurt performance sometimes!
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Which Aspects of DQN were Important for Success?

Game Linear
Deep

Network
DQN w/
fixed Q

Breakout 3 3 10

Enduro 62 29 141

River Raid 2345 1453 2868

Seaquest 656 275 1003

Space
Invaders

301 302 373
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Which Aspects of DQN were Important for Success?

Game Linear
Deep

Network
DQN w/
fixed Q

DQN w/
replay

DQN w/replay
and fixed Q

Breakout 3 3 10 241 317

Enduro 62 29 141 831 1006

River Raid 2345 1453 2868 4102 7447

Seaquest 656 275 1003 823 2894

Space
Invaders

301 302 373 826 1089

Replay is hugely important

Why? Beyond helping with correlation between samples, what does
replaying do?
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Deep RL

Success in Atari has led to huge excitement in using deep neural
networks to do value function approximation in RL

Some immediate improvements (many others!)

Double DQN (Deep Reinforcement Learning with Double Q-Learning,
Van Hasselt et al, AAAI 2016)
Prioritized Replay (Prioritized Experience Replay, Schaul et al, ICLR
2016)
Dueling DQN (best paper ICML 2016) (Dueling Network Architectures
for Deep Reinforcement Learning, Wang et al, ICML 2016)
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What You Should Understand

Be able to implement TD(0) and MC on policy evaluation with linear
value function approximation

Be able to implement Q-learning and SARSA and MC control
algorithms

List the 3 issues that can cause instability and describe the problems
qualitatively: function approximation, bootstrapping and off policy
learning

Be able to implement DQN and know some of the key features that
were critical (experience replay, fixed targets)
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Class Structure

Last time and start of this time: Model-free reinforcement learning
with function approximation

Next time: Deep RL continued
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Batch Monte Carlo Value Function Approximation

May have a set of episodes from a policy π

Can analytically solve for the best linear approximation that minimizes
mean squared error on this data set

Let G (si ) be an unbiased sample of the true expected return V π(si )

arg min
w

N∑
i=1

(G (si )− x(si )
Tw)2

Take the derivative and set to 0

w = (XTX )−1XTG

where G is a vector of all N returns, and X is a matrix of the features
of each of the N states x(si )

Note: not making any Markov assumptions
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For next class
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Convergence Guarantees for TD Linear VFA for Policy
Evaluation: Preliminaries

For infinite horizon, the Markov Chain defined by a MDP with a
particular policy will eventually converge to a probability distribution
over states d(s)

d(s) is called the stationary distribution over states of π∑
s d(s) = 1

d(s) satisfies the following balance equation:

d(s ′) =
∑
s

∑
a

π(a|s)p(s ′|s, a)d(s)
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Convergence Guarantees for Linear Value Function
Approximation for Policy Evaluation

Define the mean squared error of a linear value function
approximation for a particular policy π relative to the true value given
the distribution d as

MSVEd(w) =
∑
s∈S

d(s)(V π(s)− V̂ π(s; w))2

where
d(s): stationary distribution of π in the true decision process
V̂ π(s; w) = x(s)Tw , a linear value function approximation

TD(0) policy evaluation with VFA converges to weights wTD which is
within a constant factor of the min mean squared error possible given
distribution d :

MSVEd(wTD) ≤ 1

1− γ
min
w

∑
s∈S

d(s)(V π(s)− V̂ π(s; w))2
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Check Your Understanding L5N1: Poll

TD(0) policy evaluation with VFA converges to weights wTD which is
within a constant factor of the min mean squared error possible for
distribution d :

MSVEd(wTD) ≤ 1

1− γ
min
w

∑
s∈S

d(s)(V π(s)− V̂ π(s; w))2

If the VFA is a tabular representation (one feature for each state),
what is the MSVEd for TD?

1 Depends on the problem

2 MSVE = 0 for TD

3 Not sure
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Check Your Understanding L5N1 : Poll

TD(0) policy evaluation with VFA converges to weights wTD which is
within a constant factor of the min mean squared error possible for
distribution d :

MSVEd(wTD) ≤ 1

1− γ
min
w

∑
s∈S

d(s)(V π(s)− V̂ π(s; w))2

If the VFA is a tabular representation (one feature for each state),
what is the MSVEd for TD?
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Convergence of TD Methods with VFA

Informally, updates involve doing an (approximate) Bellman backup
followed by best trying to fit underlying value function to a particular
feature representation

Bellman operators are contractions, but value function approximation
fitting can be an expansion
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Convergence of Control Methods with VFA

Algorithm Tabular Linear VFA

Monte-Carlo Control

Sarsa

Q-learning

Emma Brunskill (CS234 Reinforcement Learning. )Lecture 5: Value Function Approximation Winter 2023 65 / 66


	A note on Monte Carlo vs TD estimates
	Value Function Approximation
	MC VFA
	Temporal Difference (TD(0)) Learning with Value Function Approximation

	Control using Value Function Approximation
	Deep learning for Value Function Approximation
	Deep Q Learning


