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Which of the following are valid equations for V™ (s;) for a state s; in an
MDP M = (S, A,P,R,v)? Note that s; is the state at time t and the
action at this timestep would be a; and the next state would be s;;1 and
so on. The policy 7 is stochastic and 7 represents a trajectory.

@ > .9 tr(si, a;) where the actions a; are sampled from the policy
Q E.-[>72, 'Yi_tr(siv ai)]

Q r(st,at) + VEs i ~p [V (5t41)]

Q r(st, ar) + YV (st41)

@ max,[Q™ (st a)]

O Eour[Q7(st, )]
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Which of the following are true about REINFORCE? In the following
options, PG stands for policy gradient.

@ Adding a baseline term can help to reduce the variance of the PG
updates

@ It will converge to a global optima

@ It can be initialized wit -optimal, deterministic policy and still
converge to a local optima, given the appropriate ste

@ If we take one step of PG, it is possible that the resulting policy gets
worse (in terms of achieved returns) than our initial policy
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Consider an MDP M. M has three states A, B, C and a terminal state
and two actions as, a;.

You observe the following episode from M. The labels above the arrows
are actions and below are the rewards.

a a a a .
B Ly Ly B =25 C =25 terminal
-2 -2 +4 -2

At each time point, the greedy deterministic behaviour policy depends only
on the current state. Could this trajectory be generated by Monte Carlo
control reinforcement learning? Could this trajectory have been generated
by SARSA? Justify your explanations.
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Given a stream of batches of n environment interactions (s;, a;, ri, s;), we
want to learn the optimal value function using a neural network. The
underlying MDP has a finite-sized action space. Your friend first suggests
the following approach:

o Initialize parameters ¢ of a neural network V;

o For each batch of k tuples (s;, a;, ri, s!) (sampled at random), do
stochastic gradient descent with the loss function Zf'(:o lyi — Vis(si) %,
where y; = max,,[ri + 7 V(s])], where the max,, is taken over all the
tuples in the batch of the form (s;, aj, *, ).

What is the problem with this approach?
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PPO Subtleties

@ In class we covered some core ideas underlying modern policy
gradient approaches

@ There are multiple other common algorithmic changes that people
often employ, including

e Entropy regularization which can be decayed
Normalizing the advantages
Using Generalized Advantage Estimation
Tuning the batch size and the number of steps per batch
Ensuring the action range output is automatically within the desired
range
@ Multiple papers discuss this issue including:
@ "Implementation matters in deep RL: A case study on PPO and TRPO”
https://openreview.net/forum?id=rletN1irtPB .
@ "Revisiting Design Choices in Proximal Policy Optimization”
https://arxiv.org/abs/2009.10897
o for actor critic algorithms "What Matters for On-Policy Deep Actor-Critic
Methods? A Large-Scale Study”

https://openreview.net/forum?id=nIAxjsniDzg
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Refresh Your Understanding

B«u\u((( \\
B> (22 lA\
@ Select all that are true: S v/l
@ In Thompson sampling for MDPs, the posterior over the dynamics can
be updated after each transition
@ When using a Beta prior for a Bernoulli reward parameter for an (s,a)
\ pair, the posterior after N samples of that pair time steps can be the
same as after N+2 samples @w‘/"’\[
<< © The optimism bonuses discussed for MBIE-EB depend on the I,f]/
maximum reward but not on the maximum value function
@ In class we discussed adding a bonus term to an update for a (s,a,r,s’)

_ tuple using Q-learning with function approximation. Adding this bonus
¢ term will ensure all Q estimates used to make decisions online using
DQN are optimistic with respect to Q*
@ Not sure
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Refresh Your Understanding

@ Select all that are true:

@ In Thompson sampling for MDPs, the posterior over the dynamics can
be updated after each transition

@ When using a Beta prior for a Bernoulli reward parameter for an (s,a)
pair, the posterior after N samples of that pair time steps can be the
same as after N+2 samples

© The optimism bonuses discussed for MBIE-EB depend on the
maximum reward but not on the maximum value function

@ In class we discussed adding a bonus term to an update for a (s,a,r,s’)
tuple using Q-learning with function approximation. Adding this bonus
term will ensure all Q estimates used to make decisions online using
DQN are optimistic with respect to Q*

@ Not sure
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Class Structure

@ Last time: Fast Learning
@ This time: Imitation Learning
@ Next time: Batch offline RL
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Learning from Past Decisions and Outcomes

In some settings there exist very good decision policies and we would like
to automate them

@ One idea: humans provide reward signal when RL algorithm makes
decisions

@ Good: simple, cheap form of supervision
@ Bad: High sample complexity

Alternative: imitation learning
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Reward Shaping

Rewards that are dense in time closely guide the agent. How can we
supply these rewards?

@ Manually design them: often brittle
o Implicitly specify them through demonstrations

Learning from Demonstration for Autonomous Navigation in Complex Unstructured
Terrain, Silver et al. 2010
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@ Simulated highway driving [ Abbeel and Ng, ICML 2004; Syed and
Schapire, NIPS 2007; Majumdar et al., RSS 2017 |

e Parking lot navigation [Abbeel, Dolgov, Ng, and Thrun, IROS 2008]
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Learning from Demonstrations

@ Expert provides a set of demonstration trajectories: sequences of

states and actions
@ Imitation learning is useful when it is easier for the expert to
demonstrate the desired behavior rather than:
e Specifying a reward that would generate such behavior,
e Specifying the desired policy directly
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Problem Setup

[5\91 S5 Sep-- - )

Input:

State space, action space

Transition model P(s’ | s, a)

No reward function R ) QA
Set of one or more teacher’s demonstrations (sp, ag, 51, % - - -)
(actions drawn from teacher’s policy 7*)

@ Behavioral Cloning: (,jqu-‘f

o Can we directly learn the teggher’'s policy using supervised learning?
Inverse RL:

e Can we recover R?

Apprenticeship learning via Inverse RL:
e Can we use R to generate a good policy?
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Behavioral Cloning

_S___'>C\

@ Formulate problem as a standard machine learning problem:

o Fix a policy class (e.g. neural network, decision tree, etc.)
o Estimate a policy from training examples (so, a0), (51, a1), (2, @2), - - -

@ Two notable success stories:

o Pomerleau, NIPS 1989: ALVINN
e Summut et al., ICML 1992: Learning to fly in flight simulator

‘( M)tzvj V-
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ALVINN

Road Intensity 45 Direction
Feedback Unit QOutput Units

8x32 Range Finder
Input Retina

30x32 Video
Input Retina
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Behavioral cloning

° Ofiil Iehavior cloning in practice can work very well, especially if use

@ See What Matters in Learning from Offline Human Demonstrations
for Robot Manipulation. Mandlekar et al. CORL 2021
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Potential Problem with Behavior Cloning: Compounding

Errors
/Q[Gur :Sr,Or, ,S,r--- \
S e~ s'=aa f sl'> o

Supervised learning assumes iid. (s, a) pairs and ignores temporal structure
Independent in time errors:

Error at time t with probability <=¢
E[Total errors] <=¢€T

Emma Brunskill (CS234 Reinforcement Learn Winter 2023 23 /49



Problem: Compounding Errors

Expert trajectory

Learned Policy >/

No data on
how to recover

Data distribution mismatch!
In supervised learning, (x,y) ~ D during train and test. In MDPs:

&,evwvé&

o Train: sy ~ Dy~

w C
o Test: s ~ Dy, 4/”‘/‘“‘(

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online
Learning, Ross et al. 2011
Emma Brunskill (CS234 Reinforcement Learn Winter 2023 24 /49



Problem: Compounding Errors

@ Error at time t with probability €

e Approximate intuition: E[Total errors]
<TH(T-1)+(T—-2)...+1)xeT?

@ Real result requires more formality. See Theorem 2.1 in
http://www.cs.cmu.edu/~srossl/publications/
Ross-AIStats10-paper.pdf with proof in supplement:
http://www.cs.cmu.edu/~srossl/publications/
Ross-AIStats10-sup.pdf

A Reduction of Imitation Learning and Structured Prediction to No-Regret Online
Learning, Ross et al. 2011
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DAGGER: Dataset Aggregation

Initialize D « 0.

Initialize 7, to any policy in II.

for i =1to N do
Let 7; =ﬁﬂr*+(1—ﬁ,)frl / /
Sample T'-step trajectories using ;. 1/
Get dataset D; = {(s,7°(s))} of visited states by m;
and actions given by expert.
Aggregate datasets: D «— D | D;.

Train classifier 7; 1 on D. A( heatcs c;/or/L Cec—~
end for S

Return best 7; on validation.

@ ldea: Get more labels of the expert action along the path taken by
the policy computed by behavior cloning

o Obtains a stationary deterministic policy with good performance
under its induced state distribution

o Key limitation?
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Feature Based Reward Function

Given state space, action space, transition model P(s" | s, a)
—

No reward function R

Set of one or more expert's demonstrations (sp, ag, S1, %0, - - -)
(actions drawn from teacker’s policy 7*) € X pct F

Goal: infer the reward function R

Assume that the teaett@r’s policy is optimal. What can be inferred
about R? ey pee b
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Check Your Understanding: Feature Based Reward

Function

Given state space, action space, transition model P(s’ | s, a)

No reward function R

Set of one or more eacher’s demonstrations (s0, a0, s1, %0, - - -)
(actions drawn from teacher's policy 7*)

Goal: infer the reward function R @Kf"' 7L
Assume that the teacher’s policy is optimal.

@ There is a single unique R that makes teacher’s policy optimal
@here are many possible R that makes teacher’s policy optimal

© It depends on the MDP

@ Not sure
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Check Your Understanding: Feature Based Reward

Function

e Given state space, action space, transition model P(s" | s, a)
@ No reward function R

@ Set of one or more teacher's demonstrations (sg, ag, 51, S0, - - -)
(actions drawn from teacher's policy 7*)

@ Goal: infer the reward function R

@ Assume that the teacher’s policy is optimal.

There is a single unique R that makes teacher’s policy optimal
There are many possible R that makes teacher’s policy optimal
It depends on the MDP

Not sure
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Linear Feature Reward Inverse RL

@ Recall linear value function approximation
@ Similarly, here consider when reward is linear over features
o R(s) = w'x(s) where w e R", x: S — R"
o Goal: identify t—h_e—weight vector w given a set of demonstrations

@ The resulting value function for a policy ™ can be expressed as

V7(s0) = Eswr[> 7 R(st)I50]

:[Es\fr g-r:c: ffwcf;o[gf> ,Sot\
T WT Esur [Sirop TXED ] s
= WT/,L[TT\
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Linear Feature Reward Inverse RL

Recall linear value function approximation

Similarly, here consider when reward is linear over features
o R(s) = w'x(s) where w e R",x: S — R"

Goal: identify the weight vector w given a set of demonstrations

The resulting value function for a policy 7 can be expressed as

V(s0) = Esen[Y_7'R(st) | s0] = Esnn 323207 w T x(st) | 0]
t=0

= w Esur 35207 x(st) | 0]
=w'p(r)

where p(7)(s) is defined as the discounted weighted frequency of
state features under policy 7, starting in state sp.
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Relating Frequencies to Optimality

o Assume R(s) = w'x(s) where w € R",x : S — R”

@ Goal: identify the weight vector w given a set of demonstrations
o VT =Eou:[D20VR*(st) | 7] = w ' p(r) where
u(m)(s) = discounted weighted frequency of state s under policy 7.

V*Zvﬂ'

WS = ow Ty
—
obmv\:\v\ﬂ
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Relating Frequencies to Optimality

Recall linear value function approximation
Similarly, here consider when reward is linear over features
o R(s) = w'x(s) where w e R",x: S —» R"
Goal: identify the weight vector w given a set of demonstrations

The resulting value function for a policy 7 can be expressed as
VT =w' p(r)

o u(m)(s) = discounted weighted frequency of state s under policy 7.

Egr [ny )| 7= V> VT =Eer[d AR (st) | 7]
t=0

Therefore if the expert’s demonstrations are from the optimal policy,
to identify w it is sufficient to find w* such that

W*T/L(W*) > W*T[L(TF),VTF / *
A
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Feature Matching

@ Want to find a reward function such that the expert policy
outperforms other policies.

@ For a policy 7 to be guaranteed to perform as well as the expert
policy 7*, sufficient if its discounted summed feature expectations
match the expert’s policy [Abbeel & Ng, 2004].

@ More precisely, if
() = (7)1 < e
then for all w with ||w|s < 1:
w () = wp(m)| < e

dem o
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Ambiguity

@ There is an infinite number of reward functions with the same optimal
policy.

@ There are infinitely many stochastic policies that can match feature
counts

@ Which one should be chosen?
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Learning from Demonstration / Imitation Learning Pointers

@ Many different approaches

@ Two of the key papers are:
e Maximumum Entropy Inverse Reinforcement Learning (Ziebart et al.

AAAI 2008)
o Generative adversarial imitation learning (Ho and Ermon, NeurlPS

2016)
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Max Entropy Inverse RL

@ Again assume a linear reward function R(s) = w'x(s)
@ Define the total feature counts for a single trajectory 7; as:
Kz = Zs,-erj X(Si)
o Note that this is a slightly different definition that we saw earlier

@ The average feature counts over m trajectories is: i = % ijzl P
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Deterministic MDP Path Distributions

o Consider all possible H-step trajectories in a deterministic MDP
@ For a linear reward model, a policy is completely specified by its
distribution over trajectories

e Which policy/distribution should we choose given a set of m
demonstrations?

Emma Brunskill (CS234 Reinforcement Learn Winter 2023 40 /49



Principle of Max Entropy

@ Principle of max entropy: choose distribution with no additional
preferences beyond matching the feature expectations in the
demonstration dataset

max — Z P(7)log P(T Z P(T)ur = fi Z P(r) =
T T (1)

@ In the linear reward case, this is equivalent to specifying the weights

w that yield a policy with the max entropy constrained to matching
the feature expectations

In class | went through some background on the board

Ziebart et al., 2008
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Max Entropy Principle

@ Maximizing the entropy of the distribution over the paths subject to
the feature constraints from observed data implies we maximize the
likelihood of the observed data under the maximum entropy
(exponential family) distribution.

Z(lw) exp (WT,MTJ.> = Z(lw) exp Z w T x(s;)

Si€Tj

P(7j | w) =

Z(w,s) = Zexp (WTMTS>

@ Strong preference for low cost paths, equal cost paths are equally
probable. Class finisher around here, plus the what you should know slide

1
Jaynes 1957
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Stochastic MDPs

@ Many MDPs of interest are stochastic

@ For these the distribution over paths depends both on the reward
weights and on the stochastic dynamics

exp (WT,U,TJ
P 1 I8 I
Z(w, P(s']s, a) H (sivalsis 2i)

s,,a,ETJ

P(7j | w, P(s']s, a)) =
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Learning w

@ Select w to maximize likelihood of data:

w* = arg max L(w) = arg max Z log P(7 | w)
w w

examples

@ The gradient is the difference between expected empirical feature
counts and the learner’s expected feature counts, which can be
expressed in terms of expected state visitation frequencies

Vi(w)=j—> P(r|w)u: =ji— Y D(s)x(s)

e where D(s;): state visitation frequency

@ Do we need to know the transition model to compute the above?
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MaxEnt IRL Algorithm

Backward pass
1.SetZ,0=1
2. Recursively compute for [V iterations

Z P 3k|su a; ])ereward(sz\ﬁ)z

a,]

= Z Za,,

ag,j
Local action probability computation
Za,; ;
3. P((li,j |31) = —ZLL;;]

Forward pass
4. Set Dsz,t = P(Sz = sinitial)
5. Recursively compute fort =1to N
s, t+1 — ZZDS;C tP azg|sz)P(Sk|a1]731)
a;; k

Summing frequencies

6.D,,=>» D,,,
t
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Max Entropy IRL

@ Max entropy approach has been hugely influential

@ Provides a principled way for selecting among the (many) possible
reward functions
@ The original formulation requires knowledge of the transition model or
the ability to simulate/act in the world to gather samples of the
transition model
o Check your understanding: was this needed in behavioral cloning?
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From IRL to Policies

@ Inverse RL approaches provide a way to learn a reward function

@ Generally interested in using this reward function to compute a policy
whose performance equals or exceeds the expert policy

@ One approach: given learned reward function, use with regular RL

@ Can we more directly learn the desired policy?
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@ Imitation learning can greatly reduce the amount of data need to
learn a good policy

@ Challenges remain and one exciting area is combining inverse RL /
learning from demonstration and online reinforcement learning

@ For a look into some of the theory between imitation learning and RL,
see Sun, Venkatraman, Gordon, Boots, Bagnell (ICML 2017)

Emma Brunskill (CS234 Reinforcement Learn Winter 2023 48 /49



Imitation learning: What You Should Know

@ Define behavior cloning and how it differs from reinforcement learning

Know some limitations and challenges to IRL
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Class Structure

@ Last time: Learning from offline data, overview and policy evaluation

@ This time: Learning from offline data, policy evaluation and imitation
learning

o Next time: Learning from offline data, policy optimization / learning
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