CS234: Reinforcement Learning - Problem Session \#1

Spring 2023-2024

Problem 1

Suppose we have an infinite-horizon, discounted $\operatorname{MDP} \mathcal{M}=\langle\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{T}, \gamma\rangle$ with a finite state-action space, $|\mathcal{S} \times \mathcal{A}|<\infty$ and $0 \leq \gamma<1$. For any two arbitrary sets \mathcal{X} and \mathcal{Y}, we denote the class of all functions mapping from \mathcal{X} to \mathcal{Y} as $\{\mathcal{X} \rightarrow \mathcal{Y}\} \triangleq\{f \mid f: \mathcal{X} \rightarrow \mathcal{Y}\}$. In the questions that follow, let $Q, Q^{\prime} \in\{\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}\}$ be any two arbitrary action-value functions and consider any fixed state $s \in \mathcal{S}$. Without loss of generality, you may assume that $Q(s, a) \geq Q^{\prime}(s, a), \forall(s, a) \in \mathcal{S} \times \mathcal{A}$.

1. Prove that $\left|\max _{a \in \mathcal{A}} Q(s, a)-\max _{a^{\prime} \in \mathcal{A}} Q^{\prime}\left(s, a^{\prime}\right)\right| \leq \max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right|$.
2. Prove that $\left|\min _{a \in \mathcal{A}} Q(s, a)-\min _{a^{\prime} \in \mathcal{A}} Q^{\prime}\left(s, a^{\prime}\right)\right| \leq \max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right|$.
3. Prove that $\left|\frac{1}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} Q(s, a)-\frac{1}{|\mathcal{A}|} \sum_{a^{\prime} \in \mathcal{A}} Q^{\prime}\left(s, a^{\prime}\right)\right| \leq \max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right|$.
4. Prove that, for any parameter $\omega \in \mathbb{R},{ }^{1}$

$$
\left|\frac{1}{\omega} \log \left(\frac{1}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} \exp (\omega \cdot Q(s, a))\right)-\frac{1}{\omega} \log \left(\frac{1}{|\mathcal{A}|} \sum_{a^{\prime} \in \mathcal{A}} \exp \left(\omega \cdot Q^{\prime}\left(s, a^{\prime}\right)\right)\right)\right| \leq \max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right|
$$

Hint: define and introduce $\Delta(a)=Q(s, a)-Q^{\prime}(s, a)$ for $a \in \mathcal{A}$.

[^0]The remainder of this question focuses on Algorithm 1, which takes as input an operator

$$
\bigotimes:\{\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}\} \rightarrow\{\mathcal{S} \rightarrow \mathbb{R}\}
$$

that adheres to the following property ${ }^{2}$:

$$
\begin{equation*}
\left\|Q-\bigotimes Q^{\prime}\right\|_{\infty} \leq\left\|Q-Q^{\prime}\right\|_{\infty}, \quad \forall Q, Q^{\prime} \in\{\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}\} \tag{1}
\end{equation*}
$$

```
Algorithm 1:
    Data: Finite MDP \(\mathcal{M}\), Operator \(\bigotimes\) satisfying Equation 1
    Initialize \(V_{0}(s)=0, \forall s \in \mathcal{S} \quad \triangleright\) Initial value function estimate
    Initialize \(k=1\)
                                    \(\triangleright\) Iteration counter
    while not converged do
        for each state \(s \in \mathcal{S}\) do
            \(V_{k}(s)=\bigotimes_{a \in \mathcal{A}}\left(\mathcal{R}(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s^{\prime} \mid s, a\right) V_{k-1}\left(s^{\prime}\right)\right)\).
            end
            \(k=k+1\)
    end
    Return \(V_{k}\)
```

5. For any value function $V \in\{\mathcal{S} \rightarrow \mathbb{R}\}$, define the operator $\mathcal{B}:\{\mathcal{S} \rightarrow \mathbb{R}\} \rightarrow\{\mathcal{S} \rightarrow \mathbb{R}\}$ as follows:

$$
\mathcal{B} V(s)=\bigotimes_{a \in \mathcal{A}}\left(\mathcal{R}(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right)\right)
$$

where \otimes satisfies Equation 1. Prove that \mathcal{B} is a γ-contraction with respect to the L_{∞}-norm.

[^1]6. Let $\bigotimes_{1}, \bigotimes_{2}:\{\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}\} \rightarrow\{\mathcal{S} \rightarrow \mathbb{R}\}$ be two operators satisfying Equation 1. Prove that, for any $0 \leq \lambda \leq 1$,
$$
\bigotimes_{\lambda}=\lambda \bigotimes_{1}+(1-\lambda) \bigotimes_{2}
$$
also satisfies Equation 1.
7. For any $0 \leq \varepsilon \leq 1$, define your own operator $\bigotimes_{\varepsilon}:\{\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}\} \rightarrow\{\mathcal{S} \rightarrow \mathbb{R}\}$ and prove that running Algorithm 1 with your \bigotimes_{ε} returns the value function associated with the ε-greedy optimal policy (where the optimal policy maximizes the expected sum of future discounted rewards).

[^0]: ${ }^{1}$ For any $x \in \mathbb{R}, \exp (x)=e^{x}$ and all logarithms are base e.

[^1]: ${ }^{2}$ As always, $\|\cdot\|_{\infty}$ denotes the L_{∞}-norm.

