CS234: Reinforcement Learning - Problem Session \#1

Spring 2023-2024

Problem 1

Suppose we have an infinite-horizon, discounted $\operatorname{MDP} \mathcal{M}=\langle\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{T}, \gamma\rangle$ with a finite state-action space, $|\mathcal{S} \times \mathcal{A}|<\infty$ and $0 \leq \gamma<1$. For any two arbitrary sets \mathcal{X} and \mathcal{Y}, we denote the class of all functions mapping from \mathcal{X} to \mathcal{Y} as $\{\mathcal{X} \rightarrow \mathcal{Y}\} \triangleq\{f \mid f: \mathcal{X} \rightarrow \mathcal{Y}\}$. In the questions that follow, let $Q, Q^{\prime} \in\{\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}\}$ be any two arbitrary action-value functions and consider any fixed state $s \in \mathcal{S}$. Without loss of generality, you may assume that $Q(s, a) \geq Q^{\prime}(s, a), \forall(s, a) \in \mathcal{S} \times \mathcal{A}$.
Solution: The first three parts of this question are proven simultaneously and in more generality via Theorem 8 of Littman and Szepesvári [1996].

1. Prove that $\left|\max _{a \in \mathcal{A}} Q(s, a)-\max _{a^{\prime} \in \mathcal{A}} Q^{\prime}\left(s, a^{\prime}\right)\right| \leq \max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right|$.

Solution: We can start by simply ignoring the absolute value signs on the left-hand side. Let $a^{\star}=\underset{a \in \mathcal{A}}{\arg \max } Q(s, a)$. Then,

$$
\begin{aligned}
\max _{a \in \mathcal{A}} Q(s, a)-\max _{a^{\prime} \in \mathcal{A}} Q^{\prime}\left(s, a^{\prime}\right) & =Q\left(s, a^{\star}\right)-\max _{a^{\prime} \in \mathcal{A}} Q^{\prime}\left(s, a^{\prime}\right) \\
& \leq Q\left(s, a^{\star}\right)-Q^{\prime}\left(s, a^{\star}\right) \\
& \leq \max _{a \in \mathcal{A}}\left(Q(s, a)-Q^{\prime}(s, a)\right) \\
& \leq \max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right| .
\end{aligned}
$$

Now, take absolute values on both sides of the inequality (the left-hand side is already non-negative) to get

$$
\left|\max _{a \in \mathcal{A}} Q(s, a)-\max _{a^{\prime} \in \mathcal{A}} Q^{\prime}\left(s, a^{\prime}\right)\right| \leq \max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right| .
$$

2. Prove that $\left|\min _{a \in \mathcal{A}} Q(s, a)-\min _{a^{\prime} \in \mathcal{A}} Q^{\prime}\left(s, a^{\prime}\right)\right| \leq \max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right|$.

Solution: We can start by simply ignoring the absolute value signs on the left-hand side. Let $a^{\star}=\underset{a^{\prime} \in \mathcal{A}}{\arg \min } Q^{\prime}\left(s, a^{\prime}\right)$. Then,

$$
\begin{aligned}
\min _{a \in \mathcal{A}} Q(s, a)-\min _{a^{\prime} \in \mathcal{A}} Q^{\prime}\left(s, a^{\prime}\right) & =\min _{a \in \mathcal{A}} Q(s, a)-Q^{\prime}\left(s, a^{\star}\right) \\
& \leq Q\left(s, a^{\star}\right)-Q^{\prime}\left(s, a^{\star}\right) \\
& \leq \max _{a \in \mathcal{A}}\left(Q(s, a)-Q^{\prime}(s, a)\right) \\
& \leq \max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right| .
\end{aligned}
$$

Now, take absolute values on both sides of the inequality (the left-hand side is already non-negative) to get

$$
\left|\min _{a \in \mathcal{A}} Q(s, a)-\min _{a^{\prime} \in \mathcal{A}} Q^{\prime}\left(s, a^{\prime}\right)\right| \leq \max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right| .
$$

3. Prove that $\left|\frac{1}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} Q(s, a)-\frac{1}{|\mathcal{A}|} \sum_{a^{\prime} \in \mathcal{A}} Q^{\prime}\left(s, a^{\prime}\right)\right| \leq \max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right|$.

Solution: We can start by simply ignoring the absolute value signs on the left-hand side.

$$
\begin{aligned}
\frac{1}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} Q(s, a)-\frac{1}{|\mathcal{A}|} \sum_{a^{\prime} \in \mathcal{A}} Q^{\prime}\left(s, a^{\prime}\right) & =\frac{1}{|\mathcal{A}|} \sum_{a \in \mathcal{A}}\left(Q(s, a)-Q^{\prime}(s, a)\right) \\
& \leq \frac{1}{|\mathcal{A}|} \sum_{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right| \\
& \leq \frac{1}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} \max _{a^{\prime} \in \mathcal{A}}\left|Q\left(s, a^{\prime}\right)-Q^{\prime}\left(s, a^{\prime}\right)\right| \\
& =\frac{1}{|\mathcal{A}|} \cdot|\mathcal{A}| \cdot \max _{a^{\prime} \in \mathcal{A}}\left|Q\left(s, a^{\prime}\right)-Q^{\prime}\left(s, a^{\prime}\right)\right| \\
& =\max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right| .
\end{aligned}
$$

Now, take absolute values on both sides of the inequality (the left-hand side is already non-negative) to get

$$
\left|\frac{1}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} Q(s, a)-\frac{1}{|\mathcal{A}|} \sum_{a^{\prime} \in \mathcal{A}} Q^{\prime}\left(s, a^{\prime}\right)\right| \leq \max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right|
$$

4. Prove that, for any parameter $\omega \in \mathbb{R},{ }^{1}$

$$
\left|\frac{1}{\omega} \log \left(\frac{1}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} \exp (\omega \cdot Q(s, a))\right)-\frac{1}{\omega} \log \left(\frac{1}{|\mathcal{A}|} \sum_{a^{\prime} \in \mathcal{A}} \exp \left(\omega \cdot Q^{\prime}\left(s, a^{\prime}\right)\right)\right)\right| \leq \max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right|
$$

Hint: define and introduce $\Delta(a)=Q(s, a)-Q^{\prime}(s, a)$ for $a \in \mathcal{A}$.
Solution: This is the so-called mellowmax operator introduced by Asadi and Littman [2017] which, unlike the Boltzmann softmax operator (see Lemma C. 3 of Littman [1996]), obeys the stated property. Let $\Delta(a)=Q(s, a)-Q^{\prime}(s, a)$

$$
\begin{aligned}
\left\lvert\, \frac{1}{\omega} \log \left(\frac{1}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} \exp (\omega \cdot Q(s, a))\right)\right. & -\frac{1}{\omega} \log \left(\frac{1}{|\mathcal{A}|} \sum_{a^{\prime} \in \mathcal{A}} \exp \left(\omega \cdot Q^{\prime}\left(s, a^{\prime}\right)\right)\right)\left|=\left|\frac{1}{\omega} \log \left(\frac{\sum_{a \in \mathcal{A}} \exp (\omega \cdot Q(s, a))}{\sum_{a^{\prime} \in \mathcal{A}} \exp \left(\omega \cdot Q^{\prime}\left(s, a^{\prime}\right)\right)}\right)\right|\right. \\
& =\left|\frac{1}{\omega} \log \left(\frac{\sum_{a \in \mathcal{A}} \exp \left(\omega \cdot\left(Q^{\prime}(s, a)+\Delta(a)\right)\right)}{\sum_{a^{\prime} \in \mathcal{A}} \exp \left(\omega \cdot Q^{\prime}\left(s, a^{\prime}\right)\right)}\right)\right| \\
& \leq\left|\frac{1}{\omega} \log \left(\frac{\sum_{a \in \mathcal{A}} \exp \left(\omega \cdot\left(Q^{\prime}(s, a)+\max _{a^{\prime} \in \mathcal{A}} \Delta\left(a^{\prime}\right)\right)\right)}{\sum_{a^{\prime} \in \mathcal{A}} \exp \left(\omega \cdot Q^{\prime}\left(s, a^{\prime}\right)\right)}\right)\right| \\
& =\left|\frac{1}{\omega} \log \left(\exp \left(\omega \cdot \max _{a^{\prime} \in \mathcal{A}} \Delta\left(a^{\prime}\right)\right) \frac{\sum_{a \in \mathcal{A}} \exp \left(\omega \cdot Q^{\prime}(s, a)\right)}{\sum_{a^{\prime} \in \mathcal{A}} \exp \left(\omega \cdot Q^{\prime}\left(s, a^{\prime}\right)\right)}\right)\right| \\
& =\left|\frac{1}{\omega} \log \left(\exp \left(\omega \cdot \max _{a^{\prime} \in \mathcal{A}} \Delta\left(a^{\prime}\right)\right)\right)\right| \\
& =\left|\max _{a \in \mathcal{A}} \Delta(a)\right| \\
& \leq \max _{a \in \mathcal{A}}\left|Q(s, a)-Q^{\prime}(s, a)\right| .
\end{aligned}
$$

[^0]The remainder of this question focuses on Algorithm 1, which takes as input an operator

$$
\bigotimes:\{\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}\} \rightarrow\{\mathcal{S} \rightarrow \mathbb{R}\}
$$

that adheres to the following property ${ }^{2}$:

$$
\begin{equation*}
\left\|\bigotimes Q-\bigotimes Q^{\prime}\right\|_{\infty} \leq\left\|Q-Q^{\prime}\right\|_{\infty}, \quad \forall Q, Q^{\prime} \in\{\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}\} \tag{1}
\end{equation*}
$$

Solution: Equation 1 is known as the non-expansion property and all operators \otimes which obey this property are known as non-expansion operators. Technically, the following convergence results also rely on \otimes obeying the following conservative property, which all the above operators also satisfy but we didn't have you prove:

$$
\min _{a \in \mathcal{A}} Q(s, a) \leq \bigotimes Q(s) \leq \max _{a \in \mathcal{A}} Q(s, a)
$$

```
Algorithm 1: Solution: Generalized Value Iteration (GVI) [Littman and Szepesvári, 1996]
    Data: Finite MDP \(\mathcal{M}\), Operator \(\otimes\) satisfying Equation 1
    Initialize \(V_{0}(s)=0, \forall s \in \mathcal{S}\)
    Initialize \(k=1\)
    while not converged do
        for each state \(s \in \mathcal{S}\) do
            \(V_{k}(s)=\bigotimes_{a \in \mathcal{A}}\left(\mathcal{R}(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s^{\prime} \mid s, a\right) V_{k-1}\left(s^{\prime}\right)\right)\).
        end
        \(k=k+1\)
    end
    Return \(V_{k}\)
```

5. For any value function $V \in\{\mathcal{S} \rightarrow \mathbb{R}\}$, define the operator $\mathcal{B}:\{\mathcal{S} \rightarrow \mathbb{R}\} \rightarrow\{\mathcal{S} \rightarrow \mathbb{R}\}$ as follows:

$$
\mathcal{B} V(s)=\bigotimes_{a \in \mathcal{A}}\left(\mathcal{R}(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s^{\prime} \mid s, a\right) V\left(s^{\prime}\right)\right)
$$

where \otimes satisfies Equation 1. Prove that \mathcal{B} is a γ-contraction with respect to the L_{∞}-norm. Solution: Take any two value functions $V_{1}, V_{2} \in\{\mathcal{S} \rightarrow \mathbb{R}\}$. Then,

$$
\begin{aligned}
\left\|\mathcal{B} V_{1}-\mathcal{B} V_{2}\right\|_{\infty} & =\max _{s \in \mathcal{S}}\left|\mathcal{B} V_{1}(s)-\mathcal{B} V_{2}(s)\right| \\
& =\max _{s \in \mathcal{S}}\left|\bigotimes_{a \in \mathcal{A}}\left(\mathcal{R}(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s^{\prime} \mid s, a\right) V_{1}\left(s^{\prime}\right)\right)-\bigotimes_{a \in \mathcal{A}}\left(\mathcal{R}(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s^{\prime} \mid s, a\right) V_{2}\left(s^{\prime}\right)\right)\right| \\
& \leq \max _{s, a \in \mathcal{S} \times \mathcal{A}}\left|\mathcal{R}(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s^{\prime} \mid s, a\right) V_{1}\left(s^{\prime}\right)-\mathcal{R}(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s^{\prime} \mid s, a\right) V_{2}\left(s^{\prime}\right)\right| \\
& =\max _{s, a \in \mathcal{S} \times \mathcal{A}}\left|\gamma \sum_{s^{\prime} \in \mathcal{S}} \mathcal{T}\left(s^{\prime} \mid s, a\right)\left[V_{1}\left(s^{\prime}\right)-V_{2}\left(s^{\prime}\right)\right]\right| \\
& \leq \max _{s, a \in \mathcal{S} \times \mathcal{A}} \gamma\left|\max _{s^{\prime} \in \mathcal{S}}\left[V_{1}\left(s^{\prime}\right)-V_{2}\left(s^{\prime}\right)\right]\right| \\
& \leq \gamma \max _{s \in \mathcal{S}}\left|V_{1}(s)-V_{2}(s)\right|=\gamma\left\|V_{1}-V_{2}\right\|_{\infty}
\end{aligned}
$$

[^1]Therefore, we have shown that the generalized Bellman operator is a γ-contraction with respect to the L_{∞}-norm.
6. Let $\bigotimes, \bigotimes:\{\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}\} \rightarrow\{\mathcal{S} \rightarrow \mathbb{R}\}$ be two operators satisfying Equation 1. Prove that, for any $0 \leq \lambda^{1} \leq{ }_{1}$,

$$
\bigotimes_{\lambda}=\lambda \bigotimes_{1}+(1-\lambda) \bigotimes_{2}
$$

also satisfies Equation 1.
Solution: Take any $Q, Q^{\prime} \in\{\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}\}$. Then,

$$
\begin{aligned}
\left\|\bigotimes_{\lambda} Q-\bigotimes_{\lambda} Q^{\prime}\right\|_{\infty} & =\max _{s \in \mathcal{S}}\left|\bigotimes_{\lambda} Q(s)-\bigotimes_{\lambda} Q^{\prime}(s)\right| \\
& =\max _{s \in \mathcal{S}}\left|\lambda \bigotimes_{1} Q(s)+(1-\lambda) \bigotimes_{2} Q(s)-\lambda \bigotimes_{1} Q^{\prime}(s)-(1-\lambda) \bigotimes_{2} Q^{\prime}(s)\right| \\
& =\max _{s \in \mathcal{S}} \mid \lambda\left(\bigotimes_{1} Q(s)-\bigotimes_{1} Q^{\prime}(s)\right)+(1-\lambda)\left(\underset{2}{ }\left(\bigotimes_{2} Q(s)-\bigotimes_{2} Q^{\prime}(s)\right) \mid\right. \\
& \leq \max _{s \in \mathcal{S}}\left[\lambda\left|\bigotimes_{1} Q(s)-\bigotimes_{1} Q^{\prime}(s)\right|+(1-\lambda)\left|\bigotimes_{2} Q(s)-\bigotimes_{2} Q^{\prime}(s)\right|\right] \\
& \leq \lambda \max _{s \in \mathcal{S}}\left|\bigotimes_{1} Q(s)-\bigotimes_{1} Q^{\prime}(s)\right|+(1-\lambda) \max _{s \in \mathcal{S}}\left|\bigotimes_{2} Q(s)-\underset{2}{\bigotimes} Q^{\prime}(s)\right| \\
& =\lambda\left\|\bigotimes_{1} Q-\underset{1}{\bigotimes} Q^{\prime}\right\|_{\infty}+(1-\lambda)\left\|\bigotimes_{2} Q-\underset{2}{\bigotimes} Q^{\prime}\right\|_{\infty} \\
& \leq \lambda\left\|Q-Q^{\prime}\right\|_{\infty}+(1-\lambda)\left\|Q-Q^{\prime}\right\|_{\infty}=\left\|Q-Q^{\prime}\right\|_{\infty} .
\end{aligned}
$$

7. For any $0 \leq \varepsilon \leq 1$, define your own operator $\bigotimes_{\varepsilon}:\{\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}\} \rightarrow\{\mathcal{S} \rightarrow \mathbb{R}\}$ and prove that running Algorithm 1 with your \bigotimes_{ε} returns the value function associated with the ε-greedy optimal policy (where the optimal policy maximizes the expected sum of future discounted rewards).
Solution: Define the non-expansion operators

$$
\bigotimes_{1} Q(s)=\frac{1}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} Q(s, a) \quad \bigotimes_{2} Q(s)=\max _{a \in \mathcal{A}} Q(s, a)
$$

A policy acting uniformly at random achieves the average Q-value over all actions at each state. Thus, \otimes is the non-expansion operator associated with this uniform random policy whereas \otimes corresponds to the usual definition of optimal policy that maximizes the Q-value at each state. ${ }^{2}$ Therefore, the ε-greedy optimal policy is formed by taking the convex combination:

$$
\bigotimes_{\varepsilon} Q=\varepsilon \bigotimes_{1} Q+(1-\varepsilon) \bigotimes_{2} Q
$$

By parts (1) and (3) above, we know that \otimes, \otimes are both non-expansion operators. Thus, by the previous part (6), we immediately have that \otimes is also a non-expansion operator implying that it is compatible with GVI. By part (5), we have that any non-expansion operator is a γ-contraction on value functions with respect to the L_{∞}-norm. Therefore, by the Banach Fixed-Point Theorem, we are guaranteed the existence of and the convergence of GVI to a unique fixed point.

References

Kavosh Asadi and Michael L. Littman. An alternative softmax operator for reinforcement learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 243-252, 2017.

Michael L. Littman. Algorithms for Sequential Decision-Making. PhD thesis, Brown University, 1996.
Michael L. Littman and Csaba Szepesvári. A generalized reinforcement-learning model: convergence and applications. In Proceedings of the Thirteenth International Conference on International Conference on Machine Learning, pages 310-318, 1996.

[^0]: ${ }^{1}$ For any $x \in \mathbb{R}, \exp (x)=e^{x}$ and all logarithms are base e.

[^1]: ${ }^{2}$ As always, $\|\cdot\|_{\infty}$ denotes the L_{∞}-norm.

