# CS234: Reinforcement Learning - Problem Session \#2 

Spring 2023-2024

## Problem 1

For this problem, we will work with a reward function operating on transitions, $\mathcal{R}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$. We are given an infinite-horizon, discounted $\operatorname{MDP} \mathcal{M}=\langle\mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{T}, \gamma\rangle$ but we will actually solve a MDP $\mathcal{M}^{\prime}$ with an augmented reward function $\mathcal{M}^{\prime}=\left\langle\mathcal{S}, \mathcal{A}, \mathcal{R}^{\prime}, \mathcal{T}, \gamma\right\rangle$ where $\mathcal{R}^{\prime}\left(s, a, s^{\prime}\right)=\mathcal{R}\left(s, a, s^{\prime}\right)+\mathcal{F}\left(s, a, s^{\prime}\right)$. To provide some motivation, think of a scenario where $\mathcal{R}$ produces values of 0 for most transitions; a bonus reward function $\mathcal{F}: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow \mathbb{R}$ that produces non-zero values could provide us more immediate feedback and help accelerate the learning speed of our agent. In this problem, we will focus on a particular type of reward bonus $\mathcal{F}\left(s, a, s^{\prime}\right)=\gamma \phi\left(s^{\prime}\right)-\phi(s)$, for some arbitrary function $\phi: \mathcal{S} \rightarrow \mathbb{R}$ and $\forall\left(s, a, s^{\prime}\right) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}$.

1. Let $Q_{\mathcal{M}}^{\star}, Q_{\mathcal{M}^{\prime}}^{\star}$ denote the optimal action-value functions of MDPs $\mathcal{M}$ and $\mathcal{M}^{\prime}$, respectively. Using the Bellman equation, prove that $Q_{\mathcal{M}}^{\star}(s, a)-\phi(s)=Q_{\mathcal{M}^{\prime}}^{\star}(s, a)$ and then use this fact to conclude that $\pi_{\mathcal{M}^{\prime}}^{\star}(s)=\pi_{\mathcal{M}}^{\star}(s), \forall s \in \mathcal{S}$.
2. Consider running $Q$-learning in each MDP $\mathcal{M}$ and $\mathcal{M}^{\prime}$ which requires, for each MDP, initial values $Q_{\mathcal{M}}^{0}(s, a)$ and $Q_{\mathcal{M}^{\prime}}^{0}(s, a)$. Let $q_{\text {init }} \in \mathbb{R}$ be a real value such that

$$
Q_{\mathcal{M}}^{0}(s, a)=q_{\text {init }}+\phi(s), \quad Q_{\mathcal{M}^{\prime}}^{0}(s, a)=q_{\text {init }} .
$$

At any moment in time, the current $Q$-value of any state-action pair is always equal to its initial value plus some $\Delta$ value denoting the total change in the $Q$-value across all updates:

$$
Q_{\mathcal{M}}(s, a)=Q_{\mathcal{M}}^{0}(s, a)+\Delta Q_{\mathcal{M}}(s, a), \quad Q_{\mathcal{M}^{\prime}}(s, a)=Q_{\mathcal{M}^{\prime}}^{0}(s, a)+\Delta Q_{\mathcal{M}^{\prime}}(s, a)
$$

Show that if $\Delta Q_{\mathcal{M}}(s, a)=\Delta Q_{\mathcal{M}^{\prime}}(s, a)$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$, then show that these two $Q$-learning agents yield identical updates for any state-action pair.

